

R LR skl S ot

M) MoToroLa

SAFETY SUMMARY
SAFETY DEPENDS ON YOU

The following general safety precautions must be observed during all phases of operation, service, and
repair of this equipment. Failure to comply with these precautions or with specific warnings elsewhere

GROUND THE INSTRUMENT.

To minimize shock hazard, the equipment chassis and enclosure must be connected to an electrical
ground. The equipment is supplied with a three-conductor ac power cable. The power cable must either
be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact
adapter, with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the
power outlet. The power jack and mating plug of the power cable meet International Electrotechnical
Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPH.ERE.

Do not operate the equipment in the presence of flammable gases or fumes. Operation of any electrical
equipment in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS.

Operating personnel must not remove equipment covers. Only Factory Authorized Service Personnel or
other qualified maintenance personnel may remove equipment covers for internal subassembly or

connected. Under certain conditions, dangerous voltages may exist even with the power cable removed.
To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE.

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and
resuscitation, is present.

USE CAUTION WHEN EXPOSING OR HANDLING THE CRT.

Breakage of the Cathode-Ray Tube (CRT) causes a high-velocity Scattering of glass fragments (implo-
sion). To prevent CRT implosion, avoid rough handling or jarring of the equipment. Handling of the
CRT should be done only by qualified maintenance personnel using approved safety mask and gloves.

DO NOT SUBSTITUTE PARTS OR MODIFY EQUIPMENT.

Because of the danger of introducing additional hazards, do not install substitute parts or perform any
unauthorized modification of the equipment. Contact Motorola Microsystems Warranty and Repair for
service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS.

environment.
WARNING

Dangerous voltages, capable of causing death, are presentin this equipment. Use extreme
caution when handling, testing, and adjusting.

P

M) mororoLa

e CHAPTER 1

CHAPTER

HHHHHHHHHHHHHHHHHHHHHH
. . . .

NP MM N MMM NN M NN
P O W e @ a8 o o e

ASE ARSI NN U XY
e« o @ . .

&Om\l\l\l\l\l\l\l\l\l\l\lm(ﬂh-ﬁ#hwr\)l—l

n

OB RABRPED AP P W

WM =

CTEWMNMNMNMN NN —

o .
PN = b et it
o . .

Wwwwmrr

N NN =

NN —

Ol WM =

W

W P =

TABLE OF CONTENTS

GENERAL INFORMATION

DESCRIPTION OF 133Bug
HOW TO USE THIS MANUAL 7 """
INSTALLATION AND STARTUP
RESTARTING THE SYSTEM
RESEE invinnvnnswonas
BUOFE o s onans wint s
R s B MR Ll mntay s
MEMORY REQUIREMENTS
TERMINAL INPUT/OUTPUT CORIROL i iliaieans m s wbom b i o
DISK 1/0 SUPPORT ueuvvmnsancomnnnnnn
100k VSRR BROTNE, wrnes st ioniir vt
Disk I/0 via 133Bug Commands
IOP (Physical I/0 to CIBRY. - oviniinns v vminsmn. s

TOT LL/G TRAER) |imsdbbicias imaions wonvn s s s

100 [0/0 Batbrol) ooviicnisnvins saloos

BO (Bootstrap Operating System) """

BH (Bootstrap and R e e s
Disk I/0 via 133Bug System Calls 00"
Default 133Bug Controller and Device Parameters
ULER 300 Breor (OUMRT, i il n B it by e o rmag e
DIAGNOSTIC FACILITIES
REFERENCE MANUALS

....................................
..................
.................................
....................................

....................................
.....................
....................

...........................

....................................

..

USING THE 133Bug DEBUGGER

ENTERING DEBUGGER COMMAND DR i oo e s T 1. o+ s
e L e N i
EARPESSTOn ab: o PRPRBREPR Louiihe vy inssnnn .
AGUPESS. 88 . PRPEIEEGE. wv ok sts vy ramess S s

- | OUPEES PRIMIES % o bl i s v bbb w8
2 UFFSHE BEHIBEENS vuravitns sibiionainmcmns s o

s A
ENTERING AND DEBUGGING FRETRIIR v i o s i i v s e
CALLING SYSTEM UTILITIES FROM USER PROGRAMS
PRESERVING THE DEBUGGER OPERATING ENVIRONMENT

133Bug Vector Table and WITUSDRER ..y nrn st om st o e e o

MC68901 Timer e e

Calculation of the Countdown Value for Timer Data
BRGS0 88 0 o oo P M B s
Tick Timer s S L T R O
Timer A Interrupt Handler 0 ' """"""
Exception Vectors Used DY IBBBUG ot viidins e s
Using 133Bug Target Vector L e N
Creating a New Vector Table ' 77"
133Bug Generalized Exception Handler "
FLOATING POINT COPROCESSOR SUPPORT 2 s v smiinewsmpcnsnsnn .

.........

©
"QD)
[0}

gouonokouokoaooooo\:mmc\mmww»—a

@ MOTOROLA

CHAPTER

4.

CHAPTER

#h#hbhbhh#b###b#hh#

mmmwmmmmmmmmwo‘lmo‘!mmmmmmmmm
T R S R, @ § e s o e W s e (@ & 8 s & ¢ ¢
I\)I\)NNNNNNNNNNNNNNNNNNNND—‘HI—I
Y s e e & & & & 8 4 @ o o o & & 9 o @ .

4

1
1
1
1
1
2
2
2
2
2
wlis
2
2
2
2
3
3
3
3
3

o

OCoO~NOOTH~WN -

N —

PO RO = b bt b bt b b
—HOWONOUIERWMN O

gL WM =

n —

TABLE OF CONTENTS (cont’d)

USING THE ONE-LINE ASSEMBLER/DISASSEMBLER

INTRODUCTION ciisic v v 1 oo oco iorait obions 516 o 610 sho 86 210 w08 wis 10 w50 00 iai o wim
MC68020 Assembly Languageceeeeeuneennennaocnnes
Machine-Instruction Operation Codes
DATBCLANGS sl o s let st wrs e ob ws 50 orwrimr o @ wie iwi'e b i 008 615 0058
Comparison with MC68020 Resident Structured Assembler ..
SOURCE PROGRAM CODING ic.vvveiiiviiunsvarvsionunsnasnonsenos
Sotiree Ling FOrmat e ceioins 5. s ns Gam e w8y 45 9 £ 9 e win m 08
Operation Fieldoeeevinniiiinniinnnieennnnnnens
Operand Fieldoveveeneeneiniiniiininneieeneeeenn,
Disassembled Source Lineceveiiiiiieninnnnenennn
Mnemonics and Delimiterscoeiieiieiiiinininns
Character Set v.iivieiieereeeeeennennenennsoeensennans
Addressing Modescoeeiiiiiieiiiiiiiiiaiiin
DC.W Define Constant Directivecoovieiiiinnn.
SYSCALL System Call Directiveccoviiviniiieennne.
ENTERING AND MODIFYING SOURCE PROGRAMSc.eevnnn
Invoking the Assembler/Disassemblerco...
Entering a Source Line ...ttt
Entering Branch and Jump Addresses
Assembler Output/Program Listingsooeevnnnene

SYSTEM CALLS

INTRODUCTION v oo o ane wis 5555 5 4 316555 o S a0 s 0 siw s s (s 006 orw mie 000 o 00
Invoking System Calls Through TRAP #15
String Formats for I/0coeiiiiiiiiiiiiiieneeennn

SYSTEM (CALL ROUTINES . cvwscssmimsnsins anymsasmampsmemmenmyme
INCHR. FURNGCEAON -« v oecoimne o555 5 bus 58 181§ & 516 @ 5 @ 506 985 5 s wvw oo o 001 0
SINSTAT FUNCEION ioiome oo w5 w506 55 0 5780 5 5 860 8 978 554 @379 3 0w w1 0w min o
CINLN FUNCEION vvveiiieeeinecnsnorooonssnssscnsoasnasnns
READSTR FUNCETON ¢ oo oo o siainisoisis oiionsios o & 610 5870 5 8 8 0w oo o
CREADLN FUNCLION & vvevienieiieiiiennenrnneeasnconsnnenns
.DSKRD, .DSKWR Functionsc.ooiiiniiinnnnnennnn.
COUTCHR FUNCEION v vveieeieieniinennnnenneonsnecnennenns
LOUTSTR, .OUTLN Functionscccciiinniniinnnereeenns
MRITE, WRITELN Functionscc.eeviivniiennnneennnn
JMRITD, .WRITDLN Functionoeeennniinniiinneeeeeens
PCRLE FUNCLAON o srve.oie 9.5 @ 56 515 8 506 908178 9 #5551 £ 114 16 0rw 1 ¢ s wamamy @ 00 8
ERASLN FUNCTION vouvermecoisesssnsceossnssssasoavonsoss
JTMOIND FUnCtion .oeeeeeneinniiinennneeneeiiniennnanne,
DT INI Function oeeeeneiniiniienieneeiininnennenn,
LTMDISP FUNCtionceceviniimnnenninnenniinecnnennens
JTMRD Function c.oveeeeneiniineiiniieeiieniiennnanene.
JREDTR BUNCEAGIL v snets mvie us st o 50w s 618 oo o o0 o0 a0 8 060 8001 908 090 3 0
.REDIR I, REDIR_O Functionsceoveinevnninninnens
RETURN. FUNCETON o v oioue oo o650 000 518 56 3 800 31880 0w 30 8 58 0w o i 0 i
.BINDEC. FUNCEAON v wsions s smssssosmssms@esssmemios e m s
CHK SUM FUnctionc.cocecncessmemmsnssssornossanas

M) moToRoLA

CHAPTER

WWwwww
OONOUT WM —

ww

w

—
o

P PO PO NI NN P NI NP TN NS N R bt bt it bt s ft s ot
ommmoooooooo\nmmpwm»—-ouooo\nmm.pwmw

w w
N —

www
(S0 = OS]

SWwWwww
OCWO~NO

OB WM

TABLE OF CONTENTS (cont’d)

Page
THE 133Bug DEBUGGER COMMAND SET
INTRODUCTION 50t s o iy wis i i s e L S 5 vt e 29
BLUGK OF. MEMDRY. RILL. (BEY. | i oo if i nias dhis s et 31
BOOTSTRAP OPERATING SYSTEM AND HALT (BH)? Bt 34l e o viums 33
BLOCK OF MEMORY INITIALIZE RBLE s b v vvaiion i s P o 34
BLOCK OF MEMORY MOVE (BM)00" 35
BOOTSTRAP OPERATING SYSTEM £) P I i 37
BREAKPOINT INSERT/DELETE ABRANOBRY. onme v s 6575 0 g 55 5 o 39
BLOCK OF MEMORY SEARCH (BS)="" 40
GLOCK. GF. MENORY. VERTRY AN 05 00 i vttt e n st 43
et 1 S S A I 7 Ot St 45
OALH. CORVERBION. (DR v on i it 3anii S et #obtn e 48
GUMP. S=RECORDE. {IUT 55, s waition b o AN hae s s ot 49
EEPROM PROGRAMMING. [EEP): .iu.ouiois3oiiinonivimemmninnii! 52
GO DIRECT (IGNORE BREAKPOINTS) B9, O TR R S, T 53
GO TO NEXT INSTRUCTION (GN)70 54
GO EXECUTE USER PROGRAM (G0)o0"" 56
GO TO TEMPORARY BREAKPOINT {0 T A ST S 58
BHELP LHEY . io..osiitd Bda%a aBiliit s vt lonn's msniin s n st bl 60
L/GLONIROL FORDISKQIOC) Giiisihiininmlnntininmmntos 62
I/0 PHYSICAL (DIRECT DISK ACCESS) (10P) Wihndis ot it oo 63
I/0 "TEACH" FOR CONFIGURING DISK CONTROLLER CEOT)E ¢ s s s 65
LOAD S-RECORDS FROM HOST BB o SBES S EEE Bd 71
MEMORY DISPLAY (MD) o000 74
PIEWOSY MOEITFY. DMM) cocnsr sin siumsm miod s 500 808 e 76
MEMORY BET (M8} o e vios s B0a5 35 it n we e i 5 s et 79
OFFSET REGISTERS DISPLAY/MODIFY (OF) 4w imaio 550 5w mpe 0 e e e 80
PRINTER ATTACH/DETACH CPATRGRRT 50 i i s s s 82
PORT. FORMAT/DETACH. (PF/NOPF) iiivuinnnininnonnnnonn 83
Listing Current Port ABSIORMONES: v viiiiiiir vrrinnanns 83
Configuring. & POPE o0 SalSUiin vy vhi sb B8R0 s e o h it 83
Parameters Configurable by POrt-Format: ..o ennanih il 84
ASSIONING 8 NEM POPE oo i s e voe et i 85
NOPE. POPE DBRALH .ovov v it o s 50 S50 im0 0 g 86
REGLSTER DISPLAY [RBF <00 Gliiiit S0 vt o ok 87
CRLL/ WIS RESEL TRESEYY oy ioiinhiicn oo vadels st o 2 91
RECLSFERGMOBERY. {RM) Ainsid i i e i s e oo me s e 92
SWITCH DIRECTORIES. €80 iive o i, svidinvis s o e o e o 94
SET TIME AND DATE (SET} oviivdvns o il cu b oo o doie 95
ABKEE R %, 260 Gl baisnd Sillne dicy o von 34 40,2500 e o o, B B 96
TERMINAL ATTACH (TA) vuvurunonnnenivrerssimmmnino, 98
TRACE ON CHANGE OF CONTROL FLOW L LR W A 99
DISPLAY TIME AND DATE (TIME} .i'innneunivnnommnnii 100
FRARSPARENT MODE AWM of i oo i ittt v e S B 101
TRACE TO TEMPORARY BREAKPOINT EIFT) 85 a8 s o s e bR 102
VERIFY S-RECORDS AGAINST MEMORY VER S5l 8800 cue e e 104

ii

@ MOTOROLA GENERAL INFORMATION

CHAPTER 1
GENERAL INFORMATION

1.1 DESCRIPTION OF 133Bug

The 133Bug package, MVMEI33BUG, is a powerful evaluation and debugging tool
for systems built around the MVME133 or MVME133-1 monoboard microcomputers.
Facilities are available for loading and executing user programs under
complete operator control for system evaluation. 133Bug includes commands for
display and modification of memory, breakpoint capabilities, a powerful
assembler/disassembler useful for patching programs, and a self test on
power-up feature which verifies the integrity of the system. Various 133Bug
routines that handle 170, data conversion, and string functions are available
to user programs through the TRAP #15 handler.

133Bug consists of three parts: (1) a command-driven user-interactive
software debugger, described in Chapter 2 and hereafter referred to as the
"debugger", (2) a command-driven diagnostic package for the MVME133 hardware,
described in Appendix G and hereafter referred to as "the diagnostics", and
(3) a user interface which accepts commands from the system console terminal.

When using 133Bug, the user operates out of either the debugger directory or
the diagnostic directory. If the user is in the debugger directory, then the
debugger prompt "133Bug>" is displayed and the user has all of the debugger
commands at his disposal. If in the diagnostic directory, then the diagnostic
prompt "133Diag>" is displayed and the user has all of the diagnostic commands
at his disposal as well as all of the debugger commands. The user may switch
between directories by using the Switch Directories (SD) command (refer to
paragraph 3.32), or may examine the commands in the particular directory that
the user 1is currently in by using the Help (HE) command (refer to paragraph
3.18).

Because 133Bug 1is command-driven, it performs its various operations in
response to user commands entered at the keyboard. Figure 1-1 illustrates the
flow of control in 133Bug. When a command is entered, 133Bug executes the
command and the prompt reappears. However, if a command is entered which
causes execution of user target code (for example, "GO"), then control may or
may not return to 133Bug, depending on the outcome of the user program.

Those users who have used one or more of Motorola’s other debugging packages
will find 133Bug very similar. There are two noticable differences. Many of
the commands are more flexible and powerful. Also, the debugger in general is
more "user-friendly", with more detailed error messages (refer to Appendix B)
and an expanded online help facility.

@ MOTOROLA

TABLE OF CONTENTS (cont’d)

APPENDIX A MVME133 MODULE STATUS REGISTER (MSR)
APPENDIX B DEBUGGING PACKAGE MESSAGES
APPENDIX C S-RECORD OUTPUT FORMAT°
APPENDIX D INFORMATION USED BY BO AND BH COMMANDS
APPENDIX E DISK CONTROLLER DATA s vsvai it oiinesmnnnnn,
APPENDIX F DISK COMMUNICATION STATUS CODES
APPENDIX G 133Bug DIAGNOSTIC FIRMWARE GUIDE

..........

....................

........

..............

LIST OF ILLUSTRATIONS
Figure 1-1. Flow Diagram of 133Bug Operational Mode

LIST OF TABLES

Table 1-1 Memory Map for Onboard RAM

Table 2-1 Formats for Debugger Address Parameters

Table 2-2 MC68901 Timer Prescaler and Countdown Values ..

Table 2-3 Exception Vectors Used by 133Bug

Table 3-1 Debugger Commands """

Table 4-1 133Bug Assembler Addressing Modes
1

Table 5- 133Bug System Call Routines

...................

iv

...........

...........

...........

...........

...........

...........

AN

@ MOTOROLA GENERAL INFORMATION

1.2 HOW TO USE THIS MANUAL

Users who have never used a debugging package before should read all of
Chapter 1 before attempting to use 133Bug. This will give an idea of 133Bug
structure and capabilities.

Paragraph 1.3, "Installation and Startup", describes a step-by-step procedure
to power up the module and obtain the 133Bug prompt on the terminal screen.

For a question about syntax or operation of a particular 133Bug command, the
user may turn to the entry for that particular command in the chapter
describing the command set (refer to Chapter 3).

Some debugger commands take advantage of the built-in one-line assembler/
disassembler. The command descriptions in Chapter 3 assume that the user

already understands how the assembler/disassembler works. Refer to the
assembler/disassembler description in Chapter 4 for details on its use.

1.3 INSTALLATION AND STARTUP

For 133Bug to operate properly with the MVME133, follow this set-up procedure.

CAUTION

INSERTING OR REMOVING MODULES WHILE POWER
IS APPLIED COULD DAMAGE MODULE COMPONENTS.

1. Turn all equipment power OFF. Refer to the MVMEI33 User’s Manual and
configure the header Jjumpers on the module as required for the user’s
particular application. The only Jjumper configurations specifically
dictated by 133Bug are those on J6. J6 must have jumpers between pins 1
and 3, and between pins 4 and 6. This sets EPROM sockets XU31 and XU46
for 64K x 8 chips in bank 1. (This may NOT be the factory configuration
of the MVME133 as shipped.)

2. Refer to the MVME133 User’s Manual and configure the Module Status
Register (MSR) as required for the user’s particular application. J15
sets or resets bits O through 4 of the MSR, and J1 enables or disables the
system controller functions of the MVME133 thus allowing the SYSCON bit of
the MSR to reflect system controller status (details in Appendix A).

3. Be sure that the two 64K x 8 133Bug EPROMs are installed in sockets XU3l
(odd bytes, odd BXX label) and XU46 (even bytes, even BXX label) on the
MVME133 module.

4. Refer to the set-up procedure for the user’s particular chassis or system
for details concerning the installation of the MVME133.

M) moToroLA GENERAL INFORMATION

| POWER-UP/RESET l @

DISPLAY BUG'S
PROMPT

POLWER-UP?

WAIT FOR INPUT
VES

RUN CONFIDENCE TEST.
IF ERROR FOUND,

STOP AND WAIT
FOR AN ABORT.

DOES
COMMAND
CAUSE TARGET CODE
ERECUTION?

YES

| EHECUTE commanD

RESTORE
TARGET STATE

{ ¥
| TARGET cope
INITIALIZE BUG [
UARIABLES i
| EHCEPTION j
‘ !
RUN FPC
EXCEPTION HANDLERS
SET DEBUGGER CONFIDENCE TEST [E |
DIRECTORY
| SAUE TARGET sTATE o}
SET DEBUGGER
DIRECTORY

DISPLAY DEBUGGER'S DISPLAY
NAME AND VERSION y TARGET REGISTERS

DISPLAY DEBUGGER'S
NAME AND VERSION.
DISPLAY COLD START

DISPLAY WARM

STRART MESSAGE MESSAGE. A
L =
GO TO
MAIN

FIGURE 1-1. Flow Diagram of 133Bug Operational Mode

GENERAL INFORMATION
(M) MOTOROLA

If the confidence test fails, the test is aborted when the first fault
is encountered and the FAIL LED remains on. If possible, one of the
following messages is displayed:

... ’CPU Register test failed’

... 'CPU Instruction test failed’

... ’ROM test failed’

... 'RAM test failed’

... 'CPU Addressing Modes test failed’
... 'Exception Processing test failed’
... ’68901 Register test failed’

Control remains with the confidence test and the monitor does not come
up. The user may force the monitor to come up by pressing the ABORT
switch on the MVME133 front panel.

1.4 RESTARTING THE SYSTEM

The user can initialize the system to a known state in three different ways.
Fach has characteristics which make it more appropriate than the others in
certain situations.

1.4.1 Reset

Pressing and releasing the MVME133 front panel RESET switch initiates a system
reset. COLD and WARM reset modes are available. By default, 133Bug is in
COLD mode (refer to the RESET command description). During COLD reset, a
total system initialization takes place, as if the MVME133 had just been
powered up. All static variables (including disk device and controller
parameters) are restored to their default states. Ports 1 and 2 are
reconfigured to their default state. The breakpoint table and offset
registers are cleared. The target registers are jnvalidated. Input and
output character queues are cleared. Onboard devices (timer, serial ports,

etc.) are reset. ‘

During WARM reset, the 133Bug variables and tables are preserved, as well as
the target state registers and breakpoints. If the particular MVME133 is the
system controller, then a system reset is issued to the VMEbus and other
modules in the system are reset as well.

Reset must be used if the processor ever halts (as evidenced by the MVME133
illuminated HALT LED), for example after a double bus fault; or if the 133Bug
environment is ever lost (vector table is destroyed, etc.).

GENERAL INFORMATION
@ MOTOROLA

5. Connect the terminal which is to be used as the 133Bug system console to
the debug port connector Ji4 (DB25 connector) on the MVME133 front panel.
Set up the terminal as follows:

. eight bits per character

. one stop bit per character

. parity disabled (no parity)

- 9600 baud to agree with default baud rate of MVME133 debug port at
power-up.

After power-up, the baud rate of the J14 debug port can be reconfigured by
programming the MC68901 Multi-Function Peripheral (MFP) chip on the
MVMEI33 module, or by using the Port Format (PF) command of the 133Bug
debugger. Refer to the MVME133 User’s Manual for details.

NOTE

In order for high-baud rate serial communication between
133Bug and the terminal to work, the terminal must do
some handshaking. If the terminal being used does not do
hardware handshaking via the CTS line (EXORterms do
hardware handshaking), . then it must do XON/XOFF
handshaking. If the user gets garbled messages and
missing characters, then he should check the terminal to
make sure XON/XOFF handshaking is enabled.

6. If it is desired to connect up some device(s) (such as a host computer
system or a serial printer) to port A (RS-485/RS-422) and/or port B (RS-
232C) on the MVME133 rear connector J2, connect the appropriate cables
and configure the port(s) as detailed in the MVME133 User’s Manual.
After power-up, these ports can be reconfigured by programming the 78530
chip on the MVME133, or by using the PF command of the 133Bug debugger.

7. Power up the system. 133Bug executes some self-checks and displays the
debugger prompt ("133Bug>").

When power is applied to the MVME133, bit 13 at location $F80000 (Module
Status Register = MSR) is set to zero indicating that power was just
applied. (Refer to Appendix A for a complete description of the MSR.)
This bit is tested within the ’Reset’ logic path to see if the power-up
confidence test needs to be executed. Location $FB0000 (Real-Time Clock
= RTC) 1is vread, thereby setting the power-up indicator to a one thus
preventing any future power-up confidence test execution.

If the power-up confidence test is successful and no failures are
detected, the firmware monitor comes up normally, with the FAIL LED off.

@ MOTOROLA GENERAL INFORMATION

TABLE 1-1. Memory Map for Onboard RAM

J2 CONNECTIONS ADDRESSES
1-2 and 3-4 $000000 - $OFFFFF
1-2 $100000 - S1FFFFF
3-4 $200000 - $2FFFFF
none $300000 - $3FFFFF
NOTE

J2 controls the base address of the RAM, only as seen
by the VMEbus. But, to the onboard logic (for example,
a monitor), the RAM address is fixed at $00000-$FFFFF.

Regardless of where the onboard RAM is located, the first 16Kb is used for
133Bug stack and static variable space and the rest is reserved as user space.
Whenever the MVME133 is reset, the target PC is initialized to the address
corresponding to the beginning of the user space and the target stack pointers
are initialized to addresses within the user space, with the target ISP set to
the top of the user space.

1.6 TERMINAL INPUT/OUTPUT CONTROL

When entering a command at the prompt, the following control codes may be
entered for limited command line editing.

NOTE

The presence of the upward caret, "A", before a character
indicates that he Control ("CTRL") key must be held down while
striking the character key.

AX (cancel 1ine) The cursor 1is backspaced to the beginning of the Tine.
If the terminal port is configured with the hardcopy or
TTY option (refer to PF command), then a carriage return
and line feed is issued along with another prompt.

H (backspace) The cursor is moved back one position. The character at
the new cursor position is erased. If the hardcopy
option 1is selected, a "/" character is typed along with
the deleted character.

 (delete or Performs the same function as “H.
rubout)

AD (redisplay) The entire command line as entered so far is redisplayed
on the following Tine.

@ MOTOROLA GENERAL INFORMATION

1.4.2 Abort

Abort is invoked by pressing and releasing the ABORT switch on the MVME133
front panel. Whenever abort is invoked when executing a user program (running
target code), a "snapshot" of the processor state is captured and stored in
the target registers. (When working in the debugger, abort captures and
stores only the program counter, status register, and format/vector
information.) For this reason, abort is most appropriate when terminating a
user program that is being debugged. Abort should be used to regain control
if the program gets caught in a Toop, etc. The target PC, stack pointers,
etc., help to pinpoint the malfunction.

Abort generates a level seven interrupt (non-maskable). The target registers,
reflecting the machine state at the time the ABORT switch was pushed, are
displayed to the screen. Any breakpoints installed in the user code are
removed and the breakpoint table remains intact. Control is returned to the
debugger.

1.4.3 Break

A "Break" is generated by pressing and releasing the BREAK key on the terminal
keyboard. Break does not generate an interrupt. The only time break is
recognized 1is when characters are sent or received by Port 1. Break removes
any breakpoints in the user code and keeps the breakpoint table intact. Break

does not, however, take a snapshot of the machine state nor does it display
the target registers.

Many times it 1is desired to terminate a debugger command prior to its
completion, for example, the display of a large block of memory. Break allows
the user to terminate the command without overwriting the contents of the
target registers, as would be done if abort were used.

1.5 MEMORY REQUIREMENTS

The program portion of 133Bug is approximately 128Kb of code. The EPROM
sockets on board the MVME133 are mapped at Tlocations $XXF00000 through
$XXF1FFFF. However, the 133Bug code 1is position-independent and executes
anywhere in memory.

133Bug requires a minimum of 16Kb of read/write memory to operate. This
memory is usually the MVME133 onboard read/write memory, requiring stand-alone
operation of the MVME133. The user selects the address at which onboard RAM
appears from the VMEbus, by using Jumpers on J2 and/or reprogramming U22,
PALDP. When U22 contains the default factory program, J2 selects the base
addresses as given in Table 1-1.

@ MOTOROLA GENERAL INFORMATION

1.7.2 Disk I/0 via 133Bug Commands

These following 133Bug commands are provided for disk 1I/0. Detailed
instructions for their use are found in Chapter 3. When a command is issued
to a particular controller LUN and device LUN, these LUNs are remembered by
133Bug so that the next disk command defaults to use the same controller and
device.

1.7.2.1 10P (Physical 1/0 to Disk). IOP allows the user to read or write
blocks of data, or to format the specified device in a certain way. 10P
creates a command packet from the arguments specified by the user, and then
invokes the proper system call function to carry out the operation.

1.7.2.2 10T _(1/0 Teach). 10T allows the user to change any configurable
parameters and attributes of the device. In addition, it allows the user to
see the controllers available in the system.

1.7.2.3 10C (I/0 Control). IOC allows the user to send command packets as
defined by the particular controller directly. IOC can also be used to look
at the resultant device packet after using the IOP command.

1.7.2.4 BO (Bootstrap Operating System). BO reads an operating system or
control program from the specified device into memory, and then transfers
control to it.

1.7.2.5 BH (Bootstrap and Halt). BH reads an operating system or control
program from a specified device into memory, and then returns control to
133Bug. It is used as a debugging tool.

1.7.3 Disk 170 via 133Bug System Calls

A11 operations that actually access the disk are done directly or indirectly
by 133Bug TRAP #15 system calls. (The command-level disk operations provide a
convenient way of using these system calls without writing and executing a
program.) The following system calls are provided to allow user programs to
do disk I/0:

.DSKRD - System call to read blocks from a disk into memory.
.DSKWR - System call to write blocks from memory onto a disk.

Refer to Chapter 5 for information on using these and other system calls.

@) mororoLA GENERAL INFORMATION

When observing output from any 133Bug command, the XON and XOFF characters
which are in effect for the terminal port may be entered to control the
output, if the XON/XOFF protocol is enabled (default). These characters are
initialized to AS and ~Q respectively by 133Bug but may be changed by the user
using the PF command. In the initialized (default) mode, operation is as
follows:

AS (wait) Console output is halted.

AQ (resume) Console output is resumed.

1.7 DISK I/0 SUPPORT

133Bug can initiate disk input/output by communicating with intelligent disk
controller modules over the VMEbus. Disk support facilities built into 133Bug
consist of command-level disk operations, disk I/0 system calls (only via the
TRAP #15 instruction) for use by user programs, and defined data structures
for disk parameters.

Parameters such as the address where the module is mapped and the type and
number of devices attached to the controller module are kept in tables by
133Bug. Default values for these parameters are assigned at power-up and
cold-start reset, but may be altered as described in paragraph 1.7.4.

Appendix E contains a 1list of the controllers presently supported, as well as
a 1ist of the default configurations for each controller,

1.7.1 Blocks Versus Sectors

The logical block defines the unit of information for disk devices. A disk is
viewed by 133Bug as a storage area divided into logical blocks. By default,
the Tlogical block size 1is set to 256 bytes for every block device in the
system.. The block size can be changed on a per device basis with the IOT
command.

The sector defines the unit of information for the media itself, as viewed by
the controller. The sector size varies for different controllers, and the
value for a specific device can be displayed and changed with the IOT command.

When a disk transfer is requested, the start and size of the transfer is
specified in blocks. 133Bug translates this into an equivalent sector
specification, which is then passed on to the controller to initiate the
transfer. If the conversion from blocks to sectors yields a fractional sector
count, an error is returned and no data is transferred.

P

(M) moToROLA

1.8 DIAGNOSTIC FACILITIES

Included in the 133Bug package is

GENERAL INFORMATION

a complete set of hardware diagnostics

intended for testing and troubleshooting of the MVME133 (refer to Appendix G).

In order to use the diagnostics,
diagnostic directory.

the user must switch directories to the
If in the debugger directory, the user can switch to

the diagnostic directory by entering the debugger command Switch Directories

(SD). The diagnostic prompt ("133Diag>") should appear.
for complete descriptions of the diagnostic routines
instructions on how to invoke them.

Refer to Appendix G

available and

Note that some diagnostics depend on
restart defaults that are set up only in a particular restart mode.

Refer to

the documentation on a particular diagnostic for the correct mode.

1.9 REFERENCE MANUALS

The following publications provide

additional information.

If not shipped
Literature

with this product, they may be purchased from Motorola’s
Distribution Center, 616 West 24th Street, Tempe, Arizona 85282; phone (602)
994-6561.

MOTOROLA

PUBLICATION NUMBER

MVMEO50 System Controller Module and MVME701/MV
I/0 Transition Module User’s Manual

ME701A

MVME133 VMEmodule 32-Bit Monoboard Microcomputer
User’s Manual

Customer Letter, MVME133bug Source Code - Version 1.0
MVME319 Intelligent Disk/Tape Controller User’s Manual
MVME320 VMEbus Disk Controller Module User’s Manual
MVME320A VMEbus Disk Controller Module User’s Manual
MVME360 Storage Module Drive Disk Controller User’s Manual

VERSAdos to VME Hardware and Software Configuration
User’s Manual

MC68020 32-Bit Microprocessor User’s Manual
MC68881 Floating-Point Coprocessor User’s Manual
MC68901 Multi-Function Peripheral Data Sheet

M68000 Family VERSAdos System Facilities Reference Manual

MVMEO50
MVME133

MVME133BSC/L1
MVME319
MVME320
MVME320A
MVME360
MVMEVDOS

MC68020UM
MC68881UM
ADI-984
M68KVSF

11

ION
M) moToroLa GENERAL INFORMATIO

To perform a disk operation, 133Bug must eventually present a particular disk
controller module with a controller command packet which has been especially
prepared for that type of controller module. (This is accomplished in the
respective controller driver module.) A command packet for one type of
controller module usually does not have the same format as a command packet
for a different type of module. The system call facilities which do disk I/0
accept a generalized (control]er-independent) packet format as an argument,
and translate it into a controller-specific packet, which is then sent to the
specified device. Refer to the system call descriptions in Chapter 5 for
details on the format and construction of these standardized "user" packets.

The packets which a controller module expects to be given vary from controller
to controller. The disk driver module for the particular hardware module
(board) must take the standardized packet given to a trap function and create
a new packet which is specifically tailored for the disk drive controller it
is sent to. Refer to documentation (refer to paragraph 1.9) on the particular
controller module for the format of its packets, and for using the I0C
command.

1.7.4 Default 133Bug Controller and Device Parameters

133Bug initializes the parameter tables for a default configuration of
controllers and devices (refer to Appendix E). If the system needs to be
configured differently than this default configuration (for example, to use a
70Mb Winchester drive where the default is a 40Mb Winchester drive), then
these tables must be changed.

There are three ways to change the parameter tables. If BQ or BH is invoked,
the configuration area of the disk is read and the parameters corresponding to
that device are rewritten according to the parameter information contained in
the configuration area. (Appendix D has more information on the disk
configuration area.) This is a temporary change. If a cold-start reset
ocg*rs, then the default parameter information is written back into the
tables.

Alternately, 10T may be used to manually reconfigure the parameter table for
any controller and/or device that is different from the default. This is also
a temporary change and is overwritten if a cold-start reset occurs.
Finally, the user may change the configuration files and re-create 133Bug so
that it has different defaults. This last option is described in detail in
customer Tletter MVME133BSC/L1 (refer to paragraph 1.9). Refer to Appendix E
for disk controller data.

1.7.5 Disk 1/0 Error Codes

133Bug returns an error code if an attempted disk operation is unsuccessful.
Refer to Appendix F for an explanation of disk I/0 error codes.

10

SING BUGGER
(W) moToROLA USING THE 133Bug DE

CHAPTER 2
USING THE 133Bug DEBUGGER

2.1 ENTERING DEBUGGER COMMAND LINES

133Bug is command-driven and performs its various operations in response to
user commands entered at the keyboard. When the debugger prompt ("133Bug>")
appears on the terminal screen, then the debugger is ready to accept commands.

As the command line is entered, it is stored in an internal buffer. Execution
begins only after the carriage return is entered, thus allowing the user to
correct entry errors, if necessary, using the control characters described in
paragraph 1.6.

Wwhen a command is entered, the debugger executes the command and the prompt
reappears. However, if the command entered causes execution of user target
code, for example "GO", then control may or may not return to the debugger,
depending on what the user program does. For example, if a breakpoint has
been specified, then control returns to the debugger when the breakpoint is
encountered during execution of the user program. Alternately, the user
program could return to the debugger by means of the TRAP #15 function
" RETURN" (described in paragraph 5.2.19). For more about this, refer to the
description in paragraphs 3.14 and 3.16 for the GD and GO commands.

In general, a debugger command is made up of the following parts:

a. The command identifier (i.e., "MD" or "md" for the Memory Display
command). Note that either upper- or lowercase is allowed.

b. A port number if the command is set up to work with more than one port.
c. At least one intervening space before the first argument.
d. Any required arguments, as specified by command.

e. An option field, set off by a semicolon (;) to specify conditions other
than the default conditions of the command.

The commands are shown using a modified Backus-Naur form syntax. The
metasymbols used are:

< > The angular brackets enclose an jtem, known as a syntactic variable, that
is replaced in a command line by one of a class of items it represents.

[1 Square brackets enclose an jtem that is optional.

| This symbol indicates that a choice is to be made. One of several items,
separated by this symbol, should be selected.

/ The slash indicates that one or more of the items separated by this
symbol can be selected.

{ } Braces enclose an optional item that may occur zero or more times.

13

@ MOTOROLA GENERAL INFORMATION

THIS PAGE INTENTIONALLY LEFT BLANK.

12

@ MOTOROLA USING THE 133Bug DEBUGGER

A numeric value may also be expressed as a string literal of up to four
characters. The string literal must begin and end with the single quote mark
(). The numeric value is interpreted as the concatenation of the ASCII
values of the characters. This value is right-justified, as any other numeric
value would be.

STRING NUMERIC VALUE
LITERAL (IN HEXADECIMAL)

A’ 41
’ABC’ 414243

*TEST’ 54455354

Evaluation of an expression is always from left to right unless parentheses
are used to group part of the expression. There is no operator precedence.
Subexpressions within parentheses are evaluated first. Nested parenthetical
subexpressions are evaluated from the inside out.

Valid expression examples:

EXPRESSION RESULT (IN HEX) NOTES
FFOO11 FFOO11
45+99 DE
845+&99 90
©35+067+010 5C
%10011110+%1001 A7
88<<4 880 shift left
AA&FO

AO logical AND

The total value of the expression must be between O and $FFFFFFFF.

2.1.1.2 Address as a Parameter.

The syntax accepted by 133Bu

Many commands use <ADDR> as a parameter.

g is similar to the one accepted by the MC68020

one-line assembler. A1l control addressing modes are allowed. An address +
offset register mode is also provided.

2.1.1.2.1 Address Formats.

Table 2-1 summarizes the address formats which

are acceptable for address parameters in debugger command Tines.

15

M) mororoLa USING THE 133Bug DEBUGGER

2.1.1 Syntactic Variables

The following syntactic variables are encountered in the command descriptions
which follow. In addition, other syntactic variables may be used and are
defined in the particular command description in which they occur.

 Delimiter; either a comma or a space.

<EXP> Expression (described in detail in paragraph 2.1.1.1).

<ADDR> Address (described in detail in paragraph 2.1.1.2).

<COUNT> Count; the syntax is the same as for <EXP>.

<RANGE> A range of memory addresses which may be specified either by

<ADDR> <ADDR> or by <ADDR> : <COUNT>.

<TEXT> An ASCII string of up to 255 characters, delimited at each end
by the single quote mark &

2.1.1.1 Expression as a Parameter. An expression can be one or more numeric
values separated by the arithmetic operators: plus (+), minus (=), multiplied
by (*), divided by (/), logical AND (&), shift left (<), or shift right (>>).

Numeric values may be expressed in either hexadecimal, decimal, octal, or
binary by immediately preceding them with the proper base identifier.

BASE IDENTIFIER EXAMPLES
Hexadecimal $ $FFFFFFFF
Decimal & &1974, 810-84
Octal @ @456
Binary % %1000110

If no base identifier is specified, then the numeric value is assumed to be
hexadecimal.

14

USING THE 133Bug DEBUGGER
@ MOTOROLA

NOTE

Relative addresses are limited to 1Mb (5 digits),
regardless of the range of the closest offset
register.

Example: A portion of the listing file of a relocatable module assembled with
the MC68020 VERSAdos Resident Assembler is shown below:

1

2 *

3 * MOVE STRING SUBROUTINE

4 *

5 0 00000000 48E78080 MOVESTR MOVEM.L DO/A0,-(A7)
6 0 00000004 4280 CLR.L DO

7 0 00000006 1018 MOVE.B (AO)+,DO

8 0 00000008 5340 SuBQ.W #1,D0

9 0 0000000A 12D8 LOOP MOVE.B (AO)+, (Al)+
10 0 0000000C 51C8FFFC MOVS DBRA DO, LOOP

11 0 00000010 4CDF0101 MOVEM.L (A7)+,D0/A0
12 0 00000014 4E75 RTS

13

14 END

*%%%kx% TOTAL ERRORS 0--
*kk%%x%x TOTAL WARNINGS 0--

The above program was loaded at address 0001327C. The disassembled code is
shown next:

133Bug>MD _1327C;DI <CR>

0001327C 48E78080 MOVEM.L DO/AO,- (A7)
00013280 4280 CLR.L DO

00013282 1018 MOVE.B (A0)+,D0
00013284 5340 SUBQ.W #1,D0
00013286 12D8 MOVE.B (AO)+, (Al)+
00013288 51C8FFFC DBF D0, $13286
0001328C 4CDF0101 MOVEM.L (A7)+,D0/A0
00013290 4E75 RTS

133Bug>

17

M) moToroLa USING THE 133Bug DEBUGGER

TABLE 2-1. Formats for Debugger Address Parameters

N 140 Absolute address + contents of
automatic offset register.

N+Rn 130+R5 Absolute address + contents of the
specified offset register (not an
assembler-accepted syntax).

(An) (A1) Address register indirect.

(d,An) or (120,A1) Address register indirect with

d(An) 120(A1) displacement (two formats accepted).
(d,An,Xn) or (&120,A1,D2) Address register indirect with index &
d(An,Xn) &120(A1,D2) displacement (two formats accepted).

([bd,An,Xn],0d) ([C,A2,A3],&100) Memory indirect pre-indexed.
([bd,An],Xn,0d) ([12,A3],D2,&10) Memory indirect post-indexed.

For the memory indirect modes, fields can be omitted. For example, three of

many permutations are as follows: =
([,An],0d) ([,A1],4)

[bd]) ([FCIE])

([bd,,Xn]) ([8,,02])

NOTES: N - Absolute address (any valid expression)
An - Address register n
Xn - Index register n (An or Dn)
d - Displacement (any valid expression)
bd - Base displacement (any valid expression)
od - Outer displacement (any valid expression)
n - Register number (0 through 7)
Rn - Offset register n

2.1.1.2.2 0ffset Registers. Eight pseudo-registers (R0-R7) called offset
registers are used to simplify the debugging of relocatable and position-
independent modules. The Tisting files in these types of programs usually
start at an address (normally 0) that is not the one in which they are loaded, ™
so it is harder to correlate addresses in the listing with addresses in the
loaded program. The offset registers solve this problem by taking into
account this difference and forcing the display of addresses in a relative
address+offset format. Offset registers have adjustable ranges and may even
have overlapping ranges. The range for each offset register is set by two
addresses: base and top. Specifying the base and top addresses for an offset
register sets its range. In the event that an address falls in two or more
offset registers’ ranges, the one that yields the least offset is chosen.

16

P

@ MOTOROLA USING THE 133Bug DEBUGGER

Another way to enter a program is to download an object file from a host
system, for example, an EXORmacs. The program must be in S-record format
(described in Appendix C) and may have been assembled or compiled on the host
system. Alternately, the program may have been previously created using the
133Bug MM command as outlined above and stored to the host using the Dump (DU)
command. A communication 1link must exist between the host system and the
MVME133 port B. (Refer to hardware configuration details in paragraph 1.3.)
The file is downloaded from the host into MVME133 memory via the debugger Load
(LO) command.

Another way is by reading in the program from disk, using one of the disk
commands (BO, BH, IOP). Once the object code has been Toaded into memory, the
user can set breakpoints if desired and run the code or trace through it.

2.3 CALLING SYSTEM UTILITIES FROM USER PROGRAMS

A convenient way of doing character input/output and many other useful
operations has been provided so that the user does not have to write these
routines into the target code. The user has access to various 133Bug routines
via the MC68020 TRAP #15 instruction. Refer to Chapter 5 for details on the
various TRAP #15 utilities available and how to invoke them from within a user
program.

2.4 PRESERVING THE DEBUGGER OPERATING ENVIRONMENT

This paragraph explains how to avoid contaminating the operating environment
of the debugger. 133Bug uses certain of the MVME133 onboard resources and may
also use offboard system memory to contain temporary variables, exception
vectors, etc. If the user disturbs resources upon which 133Bug depends, then
the debugger may function unreliably or not at all.

2.4.1 133Bug Vector Table and Wordspace

As described in paragraph 1.5, "Memory Requirements", 133Bug needs 12Kb of
read/write memory to operate and also allocates another 4Kb as user space for
a total of 16Kb allocated. 133Bug reserves a 1024-byte area for a user
program vector table area and then allocates another 1024-byte area and builds
an exception vector table for the debugger itself to use. Next, 133Bug
reserves space for static variables and initializes these static variables to
predefined default values. After the static variables, 133Bug allocates space
for the system stack and then initializes the system stack pointer to the top
of this area.

With the exception of the first 1024-byte vector table area, the user must be
extremely careful not to use the above-mentioned areas for other purposes.
The wuser should refer to paragraph 1.5 and to Appendix A to determine how to
dictate the Tocation of the reserved memory areas. If, for example, a user
program inadvertently wrote over the static variable area containing the
serial communication parameters, these parameters would be Tost, resulting in
a Tloss of communication with the system console terminal. If a user program
corrupts the system stack, then an incorrect value may be Toaded into the
processor PC, causing a system crash.

19

@ MOTOROLA USING THE 133Bug DEBUGGER

By using one of the offset registers, the disassembled code addresses can be
made to match the listing file addresses as follows:

133Bug>0F RO <CR>
RO =00000000 000000007 1327C:16. <CR>
133Bug>MD_0+R0;DI <CR>

00000+R0 48E78080 MOVEM.L DO/A0, - (A7)
00004+R0 4280 CLR.L DO

00006+R0 1018 MOVE.B (A0)+,D0
00008+R0 5340 SUBQ.W #1,D0
0000A+RO 12D8 MOVE.B (A0)+, (A1)+
0000C+R0 51C8FFFC DBF DO, $A+R0O
00010+R0 4CDF0101 MOVEM.L (A7)+,D0/A0
00014+R0 4E75 RTS

133Bug>

For additional information about the offset registers, refer to the Offset
Registers (OF) command description.

2.1.2 Port Numbers

Some 133Bug commands give the user the option of choosing the port which will

be used to input or output. The valid port numbers which may be used for
these commands are:

0 - MVME133 RS-232C Debug (Terminal Port at Jl4)
1 - MVME133 RS-232C (at P2)
2 - MVME133 RS-485 (at P2)

NOTE
These Togical port numbers (0, 1, and 2) are referred to as
"Debug Port", "Serial Port B" or "RS-232C Port", and "Serial
Port A" or "RS-485 Port", respectively, by the MVME133
hardware documentation. For example, the command DUQ (Dump

S-records to Port 0) would actually output data to the device
connected to the debug port.

2.2 ENTERING AND DEBUGGING PROGRAMS

There are various ways to enter a user program into system memory for
execution. One way is to create the program using the Memory Modify (MM)
command with the assembler/disassembler option. The program is entered by the
user one source Tline at a time. After each source line is entered, it is
assembled and the object code is loaded to memory. Refer to Chapter 4 for
complete details of the 133Bug Assembler/Disassembler.

18

@ MOTOROLA

2.4.2.2 Tick Timer Example.

timer A.

Clear bit #5 of MFP_IERA ($F80007)
Move #$10 into MFP_TACR ($F80019)
Move #$7B into MFP_TADR ($F8001F)
Move #$06 into MFP_TACR ($F80019)
Move #$68 into MFP_VR ($F80017)

NOTE

USING THE 133Bug DEBUGGER

For interrupts every 10 milliseconds, set up

Disable interrupts from timer A.
Reset and stop timer A.

Load countdown value into timer A
data register.

Set timer A for delay mode with
100 as prescaler.

Set starting vector for block of
16 interrupt vectors at $60. Also
set software interrupt mode bit.

The vector passed to the MPU for the timer A interrupt will be

$6D, therefore,

vector address

4 x $6D = $1B4. User must

place the beginning address of the timer A interrupt handling

routine at this $1B4 location.

Move #$DF into MFP_IPRA ($F8000B)
Move #$DF into MFP_ISRA ($F8000F)
Set bit #5 of MFP_IMRA ($F80013)
Set bit #5 of MFP_IERA ($F80007)

2.4.2.3 Timer A Interrupt Handler.

Read MFP_ISRA ($F8000F)
Investigate MFP_ISRA ($F8000F)
Take necessary action.

Move #$DF into MFP_ISRA ($F8000F)

Return

21

Clear timer A interrupt-pending
bit (bit #5 of IPRA).

Clear timer A interrupt-in-service
bit (bit #5 of ISRA).

Unmask interrupts from timer A.

Enable interrupts from timer A.

Read interrupt-in-service register
A.

If “bit. #5 18
interrupt was
A.

set, then the
in fact from timer

Clear timer A interrupt-in-service
bit.

Bug DEBUGGER
™) mororoLA USING THE 133Bug DE

2.4.2 MC68901 Timer Registers

The MVME133 uses the Multi-Function Peripheral (MFP) MC68901 for its front
panel debug port, its tick timers, its watchdog timer, and the status and
control information. There are four timers in the MC68901, assigned as
follows:

c

baud rate generator for the serial port.

A - software tick timer, capable of generating a periodic interrupt.

B - tick timer overflow/watchdog time-out, capable of generating a local/
system reset.

o
1

delay mode only, unassigned by hardware.

2.4.2.1 Calculation of the Countdown Value for Timer Data Register. The
countdown value may be calculated as follows:

C(D=1I *T0
PS
where:
CD = countdown value to be loaded into timer data register.
TI = timer interrupt frequency in Hz = 1,230,000 Hz.
T0 = tick timer interrupts interval in seconds.
PS = prescaler value (4, 10, 16, 50, 64, 100, or 200).

Table 2-2 contains the values for PS and CD for some selected TO interrupts
intervals.

Table 2-2. MC68901 Timer Prescaler and Countdown Values

INTERRUPTS INTERVAL DESIRED PRESCALER VALUE COUN?BOWN VALGE
TO

PS cD
1 ms = 0.001 sec 10 $7B (&123)
5 ms = 0.005 sec 50 $7B (&123)
10 ms = 0.010 sec 100 $7B (&123)
20 ms = 0.020 sec 100 $F6 (&246)
40 ms = 0.040 sec 200 $F6 (&246)
41.6 ms = 0.0416 sec 200 $0 (&256)

20

USING THE 133Bug DEBUGGER
@ MOTOROLA

table area is the base address of the MVME133, determined as described in
paragraph 1.5. This address is 1loaded into the target-state Vector Base
Register (VBR) at power-up and cold-start reset and can be observed by using
the RD command to display the target-state registers immediately after
power-up.

133Bug initializes the target vector table with the debugger vectors Tisted in
Table 2-3 and fills the other vector locations with the address of a
generalized exception handler (refer to paragraph 2.4.3.3). The target
program may take over as many vectors as desired by simply writing its own
exception vectors into the table. If the vector locations listed in Table 2-3
are overwritten, then the accompanying debugger functions will be Tost.

133bug maintains a separate vector table for its own use in a 1Kb space
elsewhere in the reserved memory space. In general, the user does not have to
be aware of the existence of the debugger vector table. It is completely
transparent to the user and the user should never make any modifications to
the vectors contained in it.

2.4.3.2 Creating a New Vector Table. A user program may create a separate
vector table in memory to contain its exception vectors. Then the user
program must change the value of the VBR to point at the new vector table. 1In
order to use the debugger facilities, the user can copy the proper vectors
from the 133Bug vector table into the corresponding vector locations in the
user vector table.

The vector for the 133Bug generalized exception handler (described in detail
in paragraph 2.4.3.3) may be copied from offset $08 (Bus Error vector) in the
target vector table to all locations in the user vector table where a separate
exception handler 1is not used. This will provide diagnostic support in the
event that the user program is stopped by an unexpected exception. The
generalized exception handler gives a formatted display of the target
registers and identifies the type of exception. Example: a user routine
which builds a separate vector table and then moves the VBR to point at it:

*

*%%% BUILDX - Build exception vector table ****
*

BUILDX MOVEC.L VBR,AO Get copy of VBR.
LEA $10000,A1 New vectors at $10000.
MOVE.L $8(A0),D0 Get generalized exception vector.
MOVE.W $3FC,D1 Load count (all vectors).

LOoP MOVE.L Do, (A1,D1) Store generalized exception vector.
SUBQ.W #4,D1
BNE.B LOOP Initialize entire vector table.
MOVE.L $10(A0),$10(A1) Copy breakpoints vector.
MOVE.L $24(A0),$24(A1) Copy trace vector.
MOVE.L $BC(A0),$BC(A1) Copy system call vector.
LEA.L COPROCC(PC) ,A2 Get user exception vector.
MOVE.L A2,$2C(A1) Install as F-Line handler.
MOVEC.L Al,VBR Change VBR to new table.
RTS
END

23

USING THE 133Bug DEBUGGER
@ MOTOROLA

2.4.3 Exception Vectors Used by 133Bug

The exception vectors used by the debugger are 1isted in Table 2-3. These
vectors must reside at the specified offsets in the target program vector

table for the associated debugger facilities (breakpoints, trace mode, etc.)
to operate.

VECTOR OFFSET EXCEPTION 133Bug FACILITY
$10 ITTegal instruction Breakpoint; ZUSEE_B;—éﬁz_Géj_éN:-Gf) *
$24 Trace Ty 1C5 TT
$BC TRAP #15 System calls (refer to Chapter 5)
$7C Level 7 interrupt ABORT switch

When the debugger handles one of the exceptions listed above, the target stack
pointer is left pointing past the bottom of the exception stack frame created;
that is, it reflects the system stack pointer values just before the exception
occurred. In this way, the operation of the debugger facility (through an

exception) is transparent to the user. Example: Trace one instruction using
the debugger.

133Bug>RD _<CR>

PC =00003000 SR =2700=TR:OFF S. 7

USP =00003830 MSP =00003C18 ISP* =00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR =0=.. CAAR =00000000
DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000

00003000 203900100000 MOVE.L ($100000).L,D0
133Bug>T <CR>
PC =00003006 SR =2700=TR:OFF S. 7

USP =00003830 MSP =00003C18 ISP* =00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR =0=.. CAAR =00000000
DO =12345678 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00003006 D280 ADD.L DO,D1

133Bug>

Notice that the value of the target stack pointer register (A7) has not
changed even though a trace exception has taken place. The user program may
either use the exception vector table provided by 133Bug or it may create a

separate exception vector table of its own. The two following paragraphs
detail these two methods.

2.4.3.1 Using 133Bug Target Vector Table. 133Bug initializes and maintains a

vector table area for target programs. A target program is any user program
started by the bug, either manually with GO or Trace type commands or
automatically with the BOot command. The start address of this target vector

22

@ MOTOROLA USING THE 133Bug DEBUGGER

133Bug>RD_<CR>

PC =00003000 SR =2700=TR:0FF_S. 7

USP =00003830 MSP =00003C18 ISP* =00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR =0=.. CAAR =00000000
DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00003000 203900F00000 MOVE.L ($F00000).L,DO

133Bug>T <CR>

Exception: Long Bus Error

Format/Vector=B008

SSW=0145 Fault Addr.=00F00000 Data In=00000000 Data Out=00002006
PC =00003000 SR =A700=TR:ALL S. 7

USP =00003830 MSP =00003C18 ISP* =00003FA4 VBR =00000000
SFC =0=XX DFC =0=XX CACR =0=.. CAAR =00000000

DO =12345678 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00003FA4
00003000 203900F00000 MVE.L ($F00000).L,DO

133Bug>

Notice that the target stack pointer is different. The target stack pointer
now points to the Tast value of the exception stack frame that was stacked.
The exception stack frame may now be examined using the MD command:

133Bug>MD (A7) :844 <CR>
00003FA4 A700 0000 2000 BOO8 3E2C 014500000027 = 0.5 .E...?
00003FB4 00F0 0000 OOFO 0000 0000 1BCC 2039 0000 o Pt Pl b8 L 9..
00003FC4 0000 200A 0000 2008 0000 2006 0000 0000

.............

00003FD4 OOFO 0000 100F 0487 0000 A700 4003 0000 .p........ 2%
00003FE4 0000 7FFF 0000 0000 C010 0000 0000 4000 Bl mem e.
00003FF4 :0000 0000 -FFF8 086C : 7o % frmin: 25 o0 Gvew X.1

133Bug>

2.5 FLOATING POINT COPROCESSOR SUPPORT

The floating point coprocessor (MC68881) 1is supported in this version of
133Bug. The commands RD, RM, MD, and MM have been extended to allow display
and modification of floating point data in registers and in memory. Floating
point instructions can be assembled/disassembled with the DI option of the
MD/MM commands. Finally, the MC68881 target state is saved and restored along
with the processor state as required when switching between the target program
and 133Bug.

At power-up/reset an FPC confidence check is executed. Initially, a read of
one of the floating point registers is attempted. If a bus error time-out is
received (no FPC detected) or if an error is detected, then the test is
aborted and an internal flag is set accordingly. If the test runs without
errors, then an internal flag is set accordingly. This flag is later checked

25

USING THE 133Bug DEBUGGER
@ MOTOROLA

It may turn out that the wuser program uses one or more of the exception
vectors that are required for debugger operation. Debugger facilities may
still be used, however, if the user exception handler can determine when to
handle the exception itself and when to pass the exception to the debugger.

When an exception occurs which the user wants to pass on to the debugger
(ABORT, for example) the user exception handler must read the vector offset
from the format word of the exception stack frame. This offset is added to
the address of the 133Bug target program vector table (which the program
saved), yielding the address of the 133Bug exception vector. The user program
then jumps to the address stored at this vector location, which is the address
of the 133Bug exception handler.

The user program must make sure that there is an exception stack frame in the
stack and that it is exactly the same as the processor would have created it
for the particular exception before jumping to the address of the exception
handler. Below is an example of a user exception handler which can pass an
exception along to the debugger:

*

*%%% EXCEPT - Exception handler *¥**

*

EXCEPT SUBQ.L #4 ,A7 Save space in stack for a PC value.

LINK A6, #0 Frame pointer for accessing PC space.
MOVEM.L A0-A5/D0-D7,-(SP) Save registers.

; decide here if user code will handle exception, if so, branch...

MOVE.L BUGVBR, A0 Pass exception to debugger; get VBR.
MOVE.W 14(A6),D0 Get the vector offset from stack frame.
AND.W #$0FFF,DO Mask off the format information.

MOVE.L (A0,DO.W),4(A6) Store address of debugger exc handler.
MOVEM.L (SP)+,A0-A5/D0-D7 Restore registers.

UNLK A6

RTS Put addr of exc handler into PC and go.

2.4.3.3 133Bug Generalized Exception Handler. 133Bug has a generalized
exception handler which it uses to handle all of the exceptions not listed in
Table 2-3. For all these exceptions, the target stack pointer is left
pointing to the top of the exception stack frame created. In this way, if an
unexpected exception occurs during execution of a user code segment, the user
is presented with the exception stack frame to help determine the cause of the
exception. The following example illustrates this:

Example: Bus error at address $F00000. It is assumed for this example that
an access of memory Tlocation $F00000 will initiate Bus Error
exception processing.

24

3 EBUGGER
@ MOTOROLA USING THE 133Bug DEBUGGE

Single Precision Real

This format would appear in memory as:

1-bit sign field (1 binary digit)
8-bit biased exponent field (2 hex digits. Bias = $7F)
23-bit fraction field (6 hex digits)

A single precision number takes 4 bytes in memory.

Double Precision Real

This format would appear in memory as:

1-bit sign field (1 binary digit)
11-bit biased exponent field (3 hex digits. Bias = $3FF)
52-bit fraction field (13 hex digits)
A double precision number takes 8 bytes in memory.
Extended Precision Real
This format would appear in memory as:
1-bit sign field (1 binary digit)
15-bit biased exponent field (4 hex digits. Bias = $3FFF)
64-bit mantissa field (16 hex digits)

An extended precision number takes 12 bytes in memory. This is because there
is a 16-bit undefined field following the exponent field. This field is never
displayed nor required to be entered when modifying extended precision data.

NOTE

Single and double precision formats have an
implied integer bit (always 1).

Packed Decimal Real

This format would appear in memory as:

4-bit sign field (4 binary digits)
16-bit exponent field (4 hex digits)
68-bit mantissa field (17 hex digits)

A packed decimal number takes 12 bytes in memory.

&

@ MOTOROLA USING THE 133Bug DEBUGGER

by the bug when doing a task switch. The FPC state will be saved and restored

only if this flag is set. This allows proper bug operation in systems that do
not have an FPC.

valid data types that can be used when modifying a floating point data
register or a floating point memory lTocation are:

12 Byte
1234 Word
12345678 Long

1_FF_7FFFFF Single Precision Real Format

1 _7FF_FFFFFFFFFFFFF Double Precision Real Format

1 7FFF_FFFFFFFFFFFFFFFF Extended Precision Real Format

1111 2103 123456789ABCDEFO1 Packed Decimal Real Format
-3.12345678901234501_E+123 Scientific Notation Format (Decimal)

When entering data in single, double, extended, or packed decimal, the
following rules must be observed:

The sign field is the first field and is a binary field.
The exponent field is the second field and is a hexadecimal field.
The mantissa field is the last field and is a hexadecimal field.

The sign field, the exponent field, and at least the first digit of the
mantissa field must be present (any unspecified digits in the mantissa
field are set to zero).

Each field must be separated from adjacent fields by an underscore.

A11 the digit positions in the sign and exponent fields must be
present.

26

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

CHAPTER 3
THE 133Bug DEBUGGER COMMAND SET

3.1 INTRODUCTION

This chapter contains descriptions of each of the debugger commands, with one
or more examples of each. Table 3-1 summarizes the 133Bug debugger commands.

TABLE 3-1. Debugger Commands

COMMAND MNEMONIC TITLE PARAGRAPH
BF Block of Memory Fill 3.2
BH Bootstrap Operating System and Halt 3.3
BI Block of Memory Initialize 3.4
BM Block of Memory Move 35
BO Bootstrap Operating System 3.6
BR/NOBR Breakpoint Insert/Delete Sl
BS Block of Memory Search 3.8
BV Block of Memory Verify 3.9
cs Checksum 3.10
DC Data Conversion 311
DU Dump S-records 3:12
EEP EEPROM Programming 3.13
GD Go Direct (Ignore Breakpoints) 3.14
GN Go to Next Instruction 3.15
GO Go Execute User Program 3.16
GT Go to Temporary Breakpoint 3.17
HE Help 3.18
I0C I/0 Control for Disk 3.19
10P I/0 Physical (Direct Disk Access) 3:20
I0T I/0 "TEACH" for Configuring Disk Controller 3:21
LO Load S-records from Host 3.22
MD Memory Display 3.23
MM Memory Modify 3.24
MS Memory Set 3.25
OF Offset Registers Display/Modify 3.26
PA/NOPA Printer Attach/Detach 3.27
PF/NOPF Port Format/Detach 3.28
RD Register Display 3.29
RESET Cold/Warm Reset 3.30
RM Register Modify 331
SD Switch Directories 3.32
SET Set Time and Date 3.33
T Trace 3.34
TA Terminal Attach 3.35
TC Trace on Change of Control Flow 3.36
TIME Display Time and Date 3.37
™ Transparent Mode 3.38
1T Trace to Temporary Breakpoint 3.39
VE Verify S-records Against Memory 3.40

@ MOTOROLA USING THE 133Bug DEBUGGER

Scientific Notation

This format provides a convenient way to enter and display a floating
point decimal number. Internally, the number is assembled into a packed
decimal number and then converted into a number of the specified data
type.

Entering data in this format requires the following fields:
An optional sign bit (+ or -).
One decimal digit followed by a decimal point.
Up to 17 decimal digits. At least one digit must be entered.
An optional Exponent field that consists of:
An optional underscore.
The Exponent field identifier, letter "E".
An optional Exponent sign (+, -).
From 1 to 3 decimal digits.
The MC68881 registers are:
3 system registers:

FPCR - Floating-point Control Register

FPSR - Floating-point Status Register

FPIAR - Floating-point Instruction Address Register
8 data registers:

FPO-FP7 - Floating-point Data Registers

For more information about the MC68881 coprocessor, refer to the MC68881
Floating Point Coprocessor User’s Manual, as listed in Chapter 1.

28

M) moToroLA THE 133Bug DEBUGGER COMMAND SET

3.2 BLOCK OF MEMORY FILL BF
BF <RANGE><data> [<increment>] [; B|W|L]
where:

<data> and <increment> are both expression parameters

options (Tength of data field):

B - Byte
W - Word
L - Longword

The BF command fills the specified range of memory with a data pattern. If an
increment is specified, then <data> is incremented by this value following
each write, otherwise <data> remains a constant value. A decrementing pattern
may be accomplished by entering a negative increment. The data entered by the
user is right-justified in either a byte, word, or longword field (as
specified by the option selected). The default field length is W (word).

If the user-entered data does not fit into the data field size, then leading
bits are truncated to make it fit. If truncation occurs, then a message is
printed stating the data pattern which was actually written (or initially
written if an increment was specified).

If the wuser-entered increment does not fit into the data field size, then
leading bits are truncated to make it fit. If truncation occurs, then a
message is printed stating the increment which was actually used.

If the upper address of the range is not on the correct boundary for an
integer multiple of the data to be stored, then data is stored to the last
boundary before the upper address. No address outside of the specified range
is ever disturbed in any case. The "Effective address" messages displayed by
the command show exactly where data was stored.

Example 1: (Assume memory from $20000 through $2002F is clear.)

133Bug>BF 20000,2001F 4E71 <CR>
Effective address: 00020000
Effective address: 0002001F
133Bug>MD 20000:30;B <CR>
00020000 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NgNgNgNgNgNgNgNq
00020010 4E 71 4E 71 4E 71 4E 71 4E 71 4F 71 4E 71 4F 71 NgNgNgNgNgNgNgNq
00020020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

................

Because no option was specified, the length of the data field defaulted to
word.

34

GER COMMAND SET
@ MOTOROLA THE 133Bug DEBUGGER COM

Each of the individual commands is described in the following pages. The
command syntax is shown using the symbols explained in paragraph 2.1.

In the examples shown, all user input is underlined. This is done for clarity
in understanding the examples (to distinguish between characters input by the
user and characters output by 133Bug). No underline is typed in actual input.
The symbol <CR> represents the carriage return key on the user’s terminal

keyboard. Whenever this symbol appears, it means that a carriage return was
entered by the user.

30

T
@ MOTOROLA THE 133Bug DEBUGGER COMMAND SE

3.3 BOOTSTRAP OPERATING SYSTEM AND HALT BH
BH [<Device LUN>][<Controller LUN>][<String>]

where:

Device LUN - Is the Logical Unit Number (LUN) of the device to boot
from. Defaults to LUN 0.

Controller LUN - Is the LUN of the controller to which the above device is
attached. Defaults to LUN 0.

 - Is a field delimiter: Comma (,) or spaces ().

<String> - Is a string that is passed to the operating system or
control program loaded. Its syntax and use is completely
defined by the loaded program.

BH is wused to Tload an operating system or control program from disk into
memory. This command works in exactly the same way as the BO command, except
that control is not given to the loaded program. After the registers are
initialized, control is vreturned to the 133Bug debugger and the prompt
reappears on the terminal screen. Because control is retained by 133Bug, all
the 133Bug facilities are available for debugging the loaded program if
necessary.

Examples:

133Bug>bh 1,0 <CR> Boot and halt from device LUN 1, controller O.
133Bug>

133Bug>bh a,3.test2:d <CR> Boot and halt from device LUN $A, controller 3,
133Bug> and pass the string "test2;d" to the loaded
program.

Refer to the BO command description for more detailed information about what
happens during bootstrap loading.

33

@ MOTOROLA

THE 133Bug DEBUGGER COMMAND SET

BF
Example 2: (Assume memory from $20000 through $2002F is clear.)
133Bug>BF 20000:10 4E71 ;B <CR>
Effective address: 00020000
Effective count : &16
Data = $71
133Bug>MD 20000:30:B <CR>
00020000 71 71 71 71 71717171 717171 7171717171 q949999999999994q
00020010 00 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00
00020020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 o......
The specified data did not fit into the specified data field size. The data
was truncated and the "Data = " message was output.
Example 3: (Assume memory from $20000 through $2002F is clear.)
133Bug>BF 20000,20006 12345678 ; L <CR>
Effective address: 00020000
Effective address: 00020003
133Bug>MD 20000:30;B <CR>
00020000 12 34 56 78 00 00 00 00 00 00 00 00 00 00 00 00 L
00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..wwueunnunnnn..
00020020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..uvvurrurnnn...
The Tongword pattern would not fit evenly in the given range. Only one

longword was written

and the "Effective address" messages reflect the fact

that data was not written all the way up to the specified address.

Example 4:

133Bug>BF _20000:18 0 1 <CR>
Effective address: 00020000
Effective count : &24

133Bug>MD 20000:18 <CR>

00020000 00 00 00 01 00 02 00 03
00020010 00 08 00 09 00 OA 00 OB
00020020 00 10 00 11 00 12 00 13

(Assume memory from $20000 through $2002F is clear.)

(default size is word)

00 04 00 05 00 06 00 07
00 0C 00 OD 00 OE 00 OF
00 14 00 15 00 16 00 17

................
................

................

32

GER COMMAND SET
@ MOTOROLA THE 133Bug DEBUGGER

3.5 BLOCK OF MEMORY MOVE BM
BM <RANGE><ADDR> [; B|W|L]

options:
B - Byte
W - Word
L - Longword

The BM command copies the contents of the memory addresses defined by <RANGE>
to another place in memory, beginning at <ADDR>.

The option field is only allowed when <RANGE> was specified using a count. In
this case, the B, W, or L defines the size of data that the count is referring
to. For example, a count of 4 with an option of L would mean to move 4
Tongwords (or 16 bytes) to the new location. If an option field is specified
without a count in the range, an error results.

Example 1: (Assume memory from 20000 to 2000F is clear.)
133Bug>MD 21000:20;B <CR>

00021000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST!!
00021010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

................

133Bug>BM 21000 2100F 20000 <CR>
Effective address: 00021000
Effective address: 0002100F
Effective address: 00020000

133Bug>MD_20000:20;B <CR>
00020000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST!!
00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
133Bug>

................

Example 2: This utility is very useful for patching assembly code in memory.
Suppose the user had a short program in memory at address 20000...

133Bug>MD 20000 2000A:DI <CR>

00020000 D480 ADD.L Do,D2
00020002 E2A2 ASR.L D1,D2
00020004 2602 MOVE.L D2,D3
00020006 4E4F TRAP #15
00020008 0021 DC.W $21
0002000A 4E71 NOP

Now suppose the user would Tike to insert a NOP between the ADD.L
instruction and the ASR.L instruction. The user should Block Move
the object code down two bytes to make room for the NOP.

35

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.4 BLOCK OF MEMORY INITIALIZE BI
BI <RANGE> [;B|W|L]

options:
B - Byte
W - Word
L - Longword

The BI command may be used to initialize parity for a block of memory. The BI
command is non-destructive; 1if the parity is correct for a memory location,
then the contents of that memory location are not altered.

The Timits of the block of memory to be initialized may be specified using a
range. The length option is valid only when a count is entered.

BI works through the memory block by reading from locations and checking
parity. If the parity is not correct, then the data read is written back to
the memory Tocation in an attempt to correct the parity. If the parity is not

correct after the write, then the message "RAM FAIL" is output and the address
is given.

This command may take several seconds to initialize a large block of memory.
Example 1:

133Bug>BI 0 : 10000 ;B <CR>
Effective address: 00000000
Effective count : &65536
133Bug>

Example 2: (Assume system memory from $0 to $000FFFFF.)

133Bug>BI 0,1FFFFF <CR>
Effective address: 00000000
Effective address: O01FFFFF
RAM FAIL AT $00100000
133Bug>

34

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

3.6 BOOTSTRAP OPERATING SYSTEM BO
BO [<Device LUN>]J[<Controller LUN>][<String>]
where:

Device LUN - Is the Logical Unit Number (LUN) of the device to boot
from. Defaults to LUN O.

Controller LUN - Is the LUN of the controller to which the above device is
attached. Defaults to LUN O.

 - Is a field delimiter: Comma (,) or spaces ().

<String> - Is a string that is passed to the operating system or
control program loaded. Its syntax and use is completely
defined by the loaded program.

BO is used to load an operating system or control program from disk into
memory and give control to it. Where to find the program and where in memory
to load it is contained in block 0 of the device LUN specified. (Refer to
Appendix D.) The device configuration information is located in block 1
(Appendix D). The device and controller configurations used when BO is
initiated can be examined and changed via the I/0 Teach (IOT) command.

The following sequence of events occurs when BO is invoked:

1. Block 0 of the device LUN and controller LUN specified is read into
memory.

2. Locations $F8 (248) through $FF (255) of block 0 are checked to contain
the string "MOTOROLA" or "EXORMACS".

3. The following information is extracted from block O:

$90 (144) - $93 (147): Configuration area starting block.
$94 (148) . Configuration area length in blocks.

If any of the above two fields is zero, the present controller
configuration is retained; otherwise the first block of the configuration
area is read and the controller reconfigured.

4. The program is read from disk into memory. The following locations from
block 0 contain the necessary information to initiate this transfer:

$14 (20) - $17 (23) : Block number of first sector to load from disk.

$18 (24) - $19 (25) : Number of blocks to Toad from disk.
$1E (30) - $21 (33) : Starting memory location to Toad.

37

M) mororoLA THE 133Bug DEBUGGER COMMAND SET

BM

133Bug>BM 20002 2000B 20004 <CR>
Effective address: 00020002
Effective address: 00020008
Effective address: 00020004

133Bug>MD_20000 2000C;DI <CR>

00020000 D480 ADD.L D0,D2
00020002 E2A2 ASR.L D1,D2
00020004 E2A2 ASR.L D1,D2
00020006 2602 MOVE.L D2,D3
00020008 4E4F TRAP #15
0002000A 0021 DC.W $21
0002000C 4E71 NOP

Now the user needs simply to enter the NOP at address 20002.
133Bug>MM _20002;DI <CR>

00020002 E2A2 ASR.L D1,D2 ? NOP <CR>
00020002 4E71 NOP

00020004 E2A2 ASR.L D1,D2 ? . <CR>
133Bug>

133Bug>MD 20000 2000C;DI <CR>

00020000 D480 ADD.L Do,D2

00020002 4E71 NOP

00020004 E2A2 ASR.L D1,D2

00020006 2602 MOVE.L D2,D3

00020008 4E4F TRAP #15

0002000A 0021 DC.W $21

0002000C 4E71 NOP

133Bug>

36

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.7 BREAKPOINT INSERT/DELETE BR
NOBR

BR [<ADDR>[:<COUNT>]]
NOBR [<ADDR>]

The BR command allows the user to set a target code instruction address as a
"breakpoint address" for debugging purposes. If, during target code
execution, a breakpoint with 0 count is found, the target code state is saved
in the target registers and control is returned back to 133Bug. This allows

the user to see the actual state of the processor at selected instructions in
the code.

Up to eight breakpoints can be defined. The breakpoints are kept in a table
which is displayed each time either BR or NOBR is used. If an address is
specified with the BR command, that address is added to the breakpoint table.
The count field specifies how many times the instruction at the breakpoint
address must be fetched before a breakpoint is taken. The count, if greater
than zero, is decremented with each fetch. Every time that a breakpoint with
zero count is found, a breakpoint handler routine prints the CPU state on the
screen and control is returned to 133Bug.

NOBR is used for deleting breakpoints from the breakpoint table. If an
address is specified, then that address is removed from the breakpoint table.
If NOBR <CR> is entered, then all entries are deleted from the breakpoint
table and the empty table is displayed.

Example:

133Bug>BR 14000,14200 14700:&12 <CR> Set some breakpoints.
BREAKPOINTS

00014000 00014200

00014700:C

133Bug>NOBR 14200 <CR> Delete one breakpoint.
BREAKPOINTS

00014000 00014700:C

133Bug>NOBR <CR> Delete all breakpoints.
BREAKPOINTS

133Bug>

39

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

BO

5. The first eight locations of the loaded program must contain a "pseudo
reset vector", which is loaded into the target registers:

0-3: Initial value for target system stack pointer.

4-7: Initial value for target PC. If less than load address+8, then it
represents a displacement that, when added to the starting Toad
address, yields the initial value for the target PC.

6. Other target registers are initialized with certain arguments. The
resultant target state is shown below:

PC = Entry point of loaded program (loaded from "pseudo reset vector").

SR = $2700.

DO = Device LUN.

D1 = Controller LUN.

D4 = IPLx’, with x = $0C ($49504C0C)
The ASCII string ’IPL’ indicates that this is the Initial Program
Load sequence; the code $0C indicates TRAP #15 support with stack
parameter passing and TRAP #15 disk support.

A0 = Address of disk controller.

Al = Entry point of loaded program.

A2 = Address of media configuration block. Zero if no configuration
Toaded.

A5 = Start of string (after command parameters).

A6 = End of string + 1 (if no string was entered A5 = A6).

A7 = Initial stack pointer (loaded from "pseudo reset vector").

7. Control is given to the loaded program. Note that the arguments passed to
the target program, as for example, the string pointers, may be used or
ignored by the target program.

Examples:

133Bug>B0_<CR> Boot from device LUN 0, controller LUN 0.

133Bug>B0 3 <CR> Boot from device LUN 3, controller LUN O.

133Bug>bo , 3 <CR> Boot from device LUN 0, controller LUN 3.

133Bug>bo 8 0,test <CR> Boot from device LUN 8, controller LUN 0,
and pass the string "test" to the booted
program.

38

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

BS

For all three modes, information on matches is output to the screen in a four-
column format. If more than 24 lines of matches are found, then output is
inhibited to prevent the first match from rolling off the screen. A message
is printed at the bottom of the screen indicating that there is more to
display. To vresume output, the user should simply press any character key.
To cancel the output and exit the command, the user should press the BREAK
key.

If a match is found (or, in the case of Mode 3, a mismatch) with a series of
bytes of memory whose beginning is within the range but whose end is outside
of the range, then that match is output and a message is output stating that
the last match does not lie entirely within the range. The user may search

non-contiguous memory with this command without causing a Bus Error.

NOTE

Due to a minor bug in the firmware, the over range
message may not appear on all releases of 133Bug.

Examples:

00030000 00 00 00 45 72 72 6F 72
00030010 34 46 2F 2F 43 6F 6E 66
00030020 74 61 72 74 3A 00 00 00

133Bug>BS 30000 3002F ’Task Status’ <CR>
Effective address: 00030000

Effective address: 0003002F

-not found-

133Bug>BS 30000 3002F ’Error Status’ <CR>
Effective address: 00030000

Effective address: 0003002F

00030003

133Bug>BS 30000 3001F ’ConfigTableStart® <CR>

20 53 74 61 74 75 73 3D
69 67 54 61 62 6C 65 53
00 00 00 00 00 00 00 00

Effective address: 00030000

Effective address: 0003001F

00030014

-Tast match extends over range boundary-

133Bug>BS 30000:30 ’t’ ; B <CR>
Effective address: 00030000
Effective count : &48
0003000A 0003000C

00030020 00030023’»/

133Bug>BS 30000:18,2F2F <CR>
Effective address: 00030000
Effective count : &24
00030012:2F2F

41

(Assume the following data is in memory.)

...Error Status=
4F//ConfigTableS

Mode 1: the string is not
found, so a message is output.

Mode 1: the string is found,
and the address of its first
byte is output.

Mode 1: the string is found,
but it ends outside of the
range, so the address of its
first byte and a message are
output.

Mode 1, using <RANGE> with
count and size option: count
is displayed in decimal, and
address of each occurrence of
the string is output.

Mode 2, using <RANGE> with
count: count is displayed in
decimal, and the data pattern
js found and displayed.

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.8 BLOCK OF MEMORY SEARCH BS
BS <RANGE> <TEXT> [;B|W|L]

or

BS <RANGE> <data> [<mask>] [;B|W|L,N,V]

The block search command searches the specified range of memory for a match
with a user-entered data pattern. This command has three modes, as described
below.

Mode 1 - LITERAL STRING SEARCH -- In this mode, a search is carried out for
the ASCII equivalent of the literal string entered by the user. This mode is
assumed if the single quote () indicating the beginning of a <TEXT> field is
encountered following <RANGE>. The size as specified in the option field
tells whether the count field of <RANGE> refers to bytes, words, or longwords.
If <RANGE> is not specified using a count, then no options are allowed. If a
match is found, then the address of the first byte of the match is output.

Mode 2 - DATA SEARCH -- In this mode, a data pattern is entered by the user as
part of the command line and a size is either entered by the user in the
option field or is assumed (the assumption is word). The size entered in the
option field also dictates whether the count field in <RANGE> refers to bytes,
words, or Tongwords. The following actions occur during a data search:

1. The user-entered data pattern is right-justified and leading bits are
truncated or leading zeros are added as necessary to make the data pattern
the specified size.

2. A compare is made with successive bytes, words, or longwords (depending on
the size in effect) within the range for a match with the user-entered
data. Comparison is made only on those bits at bit positions
corresponding to a "1" in the mask. If no mask is specified, then a
default mask of all ones is used (all bits are compared). The size of the
mask is taken to be the same size as the data.

3. If the "N" (non-aligned) option has been selected, then the data is
searched for on a byte-by-byte basis, rather than by words or longwords,
regardless of the size of <data>. This is useful if a word (or Tongword)
pattern is being searched for, but is not expected to lie on a word (or
longword) boundary.

4. If a match is found, then the address of the first byte of the match is
output along with the memory contents. If a mask was in use, then the
actual data at the memory location is displayed, rather than the data with
the mask applied.

Mode 3 - DATA VERIFICATION -- If the "V" (verify) option has been selected,
then displaying of addresses and data is done only when the memory contents do

NOT match the wuser-specified pattern. Otherwise this mode is identical to
Mode 2.

40

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

3.9 BLOCK OF MEMORY VERIFY BV
BV <RANGE><data> [<increment>] [;B|W|L]
where:

<data> and <increment> are both expression parameters

options:
B - Byte
W - Word
L - Longword

The BV command compares the specified range of memory against a data pattern.
If an increment is specified, then <data> is incremented by this value
following each comparison, otherwise <data> remains a constant value. A
decrementing pattern may be accomplished by entering a negative increment.
The data entered by the user is right-justified in either a byte, word, or
longword field (as specified by the option selected). The default field
length is W (word).

If the user-entered data or increment (if specified) do not fit into the data
field size, then leading bits are truncated to make them fit. If truncation
occurs, then a message is printed stating the data pattern and, if applicable,
the increment value actually used.

If the range is specified using a count, then the count is assumed to be in
terms of the data size.

If the upper address of the range 1is not on the correct boundary for an
integer multiple of the data to be stored, then data is stored to the last
boundary before the upper address. No address outside of the specified range
is read from in any case. The "Effective address" messages displayed by the
command show exactly the extent of the area read from.

Example 1: (Assume memory from $20000 to $2002F is as indicated.)

133Bug>MD 20000:30;B <CR>

00020000 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NgNgNgNgNgNgNgNq
00020010 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NgNgNgNgNgNgNgNq
00020020 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NgNgNgNgNgNgNgNq
133Bug>BV 20000 2001F 4E71 <CR> (default size is word)

Effective address: 00020000

Effective address: 0002001F

133Bug> (verify successful, nothing printed)

43

M) moToroLA

133Bug>bs 30000,3002F 3d34 <CR>
Effective address: 00030000
Effective address: 0003002F
-not found-

133Bug>bs 30000,3002F 3d34 :n <CR>
Effective address: 00030000
Effective address: 0003002F
0003000F:3D34

133Bug>BS 30000:30 60,F0 ;B <CR>
Effective address: 00030000
Effective count : &48
00030006 | 6F 0003000B|61

00030015]|6F

00030017|66 00030018|69 00030019|67

0003001C|62 0003001D|6C 0003001E|65
133Bug>BS 3000 1FFFF 0000 000F;V <CR>
Effective address: 00003000

Effective address: 0001FFFE

0000C000|E501 0001E224|A30E

133Bug>

42

THE 133Bug DEBUGGER COMMAND SET

BS

Mode 2: the default size is
word and the data pattern is
not found, so a message is
output.

Mode 2: the default size is
word and non-aligned option
is used, so the data pattern
is found and displayed.

Mode 2, using <RANGE>
with count, mask option,
and size option: count
00030016 |6E is displayed in decimal,
and the actual unmasked
0003001B|61 data patterns found are
displayed.
0003002161

Mode 3, on a different block
of memory, mask option, scan
for words with Tow nybble
nonzero: two locations
failed to verify.

T~

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.10 CHECKSUM CS
CS <addressl> <address2>

The Checksum command provides access to the same checksum routine used by the
power-up self-test firmware. This routine is used as follows within the
firmware monitor.

At power-up, the power-up confidence test 1is executed. One of the items
verified is the checksum contained in the firmware monitor EPROM. If for any
reason the contents of the EPROM were to change from the factory version, the
checksum test is designed to detect the change and inform the user of the
failure.

The <address> parameters can be provided in two forms:

a. An absolute address (24-bit maximum).
b. An expression using a displacement + relative offset register.

When the CS command is used to calculate/verify the content and location of
the new checksum, the operands need to be entered. The even and odd byte
result should be 0000, verifying that the checksum bytes were calculated
correctly and placed in the proper locations.

The algorithm used to calculate the checksum is as follows:

a. $FF is placed in each of two bytes within a register. These bytes
represent the even and odd bytes as the checksum is calculated.

b. Starting with the first address, the even and odd bytes are extracted
from memory and XORed with the bytes in the register.

c. This process is repeated, word by word, until the ending address minus
two is reached. Note that the last word addressed is NOT included in
the checksum. This technique allows use of even ending addresses
($D40000 as opposed to $D3FFFE).

45

AND S
@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

BV
Example 2: (Assume memory from $20000 to $2002F is as indicated.)

133Bug>MD 20000:30;B <CR>

00020000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00020010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00020020 00 00 00 00 00 00 00 00 00 00 4A FB 4A FB 4A FB J{J{J{
133Bug>BV_20000:30 0;B <CR>

Effective address: 00020000

Effective count : &48

0002002A[4A 0002002B|FB 0002002C|4A 0002002D|FB (mismatches are
0002002E|4A 0002002F|FB printed out)

133Bug>

................

Example 3: (Assume memory from $20000 to $2002F is as indicated.)

133Bug>MD_20000:18 <CR>

00020000 00 00 00 01 00 02 00 03 00 04 00 05 00 06 00 07
00020010 00 08 FF FF 00 OA 00 OB 00 OC 00 OD 00 OE 00 OF
00020020 00 10 00 11 00 12 00 13 00 14 00 15 00 16 00 17 ovovwwono...
133Bug>BV_20000:18 0 1 <CR> (default size is word)
Effective address: 00020000

Effective count : &24

00020012 | FFFF (mismatches are printed out)
133Bug>

................

................

44

@ MOTOROLA

EXAMPLE
133Bug> CS 20000 2002A <CR>

Physical Address=00020000 0002002A
(Even 0dd)=4B34

133Bug> M 20026:W <CR>
020026 0000 ?4B34. <CR>
133Bug> CS 20000 2002A <CR>

Physical Address=00020000 0002002A
(Even 0dd)=0000

133Bug> OF R3 <CR>

R3 =00000000 000000007 20000 . <CR>

133Bug> CS 0+R3 2A+R3 <CR>

Physical Address=00020000 0002002A
(Even 0dd)=4B34

133Bug> M _26+R3;W <CR>
000026+R3 0000 ?4B34. <CR>

133Bug> CS 0+R3 2A+R3 <CR>

Physical Address=00020000 0002002A
(Even 0dd)=0000

133Bug>

THE 133Bug DEBUGGER COMMAND $

COMMENT

Request checksum of area using
absolute addresses.

Checksum of even bytes is $4B.
Checksum of odd bytes is $34.

Place these bytes in zeroed area
used while calculating checksum.
Verify checksum.

Result is 0000, good checksum.

Define value of relative offset
register 3.

Request checksum of area using
relative offset.

Checksum of even bytes is $4B.
Checksum of odd bytes is $34.

Place these bytes in zeroed area used
while checksum was calculated.

Verify checksum.

47

ET

€S

M) moToroLA

EXAMPLE

MVME133> MD 20000:3F;B <CR>

020000
020010
020020
020030

42 4F 4F 54 00 00 00 14
41 F9 00 01 FO 00 20 3C
FF FC 4E 75 01 01 00 00
FF FF FF FF FF FF FF FF

133Bug> M _20010;DI

020010
020016
02001C
02001E
020022
020024

020026

020028

02002A

02002C

02002E

020030

41F90001F000
203CO000EFFF
1100
51C8FFFC
4E75

0101

0000
FFFF
FFFF
FFFF
FFFF

FFFF

THE 133Bug DEBUGGER COMMAND SET

CS
COMMENT

Display routine requiring a checksum.
Start at $20000; last byte is at
$20027. Checksum will be placed in
bytes at $20026 and $20027, so they
are zero while calculating the
checksum.

00 00 00 A6 54 65 73 74 BOOT....... &Test
00 00 EF FF 11 00 51 C8 Ay..p. <..0...QH

FF FF FF FF FF FF FF FF .[Nu
FF FF FF FF FF FF FF FF

LEA.L
MOVE.L
MOVE.B
DBF.L

RTS
BTST

DC.W

DC.W

DC.W

DC.W

DC.W

DC.W

............

................

Display executable code plus revision
number, checksum, socket ID, and a few
unused bytes following the routine.

$0001F000,A0 ?<CR>
#61439,D0 ?<CR>
DO, -(A0) ?<CR>

D0, $02001C ?<CR>
?2<CR>

DO,D1 ?<CR>

0101 is revision.

$0000 ?<CR>
0000 is where checksum is to be placed.

$FFFF 2<CR>
FFFF is unused memory.

$FFFF ?<CR>
FFFF is unused memory.

$FFFF ?2<CR>
FFFF is unused memory.

$FFFF ?<CR>
FFFF is unused memory.

$FFFF 2.<CR>
FFFF is unused memory.

46

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.12 DUMP S-RECORDS DU
DU[<port>]<RANGE>[<TEXT>][<ADDR>][<0FFSET>][;B|N|L]

The DU command outputs data from memory in the form of Motorola S-records to a
port specified by the user. If port is not specified, then the S-records are
sent to the host port.

The option field is allowed only if a count was entered as part of the range,
and defines the units of the count (bytes, words, or longwords).

The optional <TEXT> field is for text that will be incorporated into the
header (SO) record of the block of records that will be dumped.

The optional <ADDR> field is to allow the user to enter an entry address for
code contained in the block of records. This address is incorporated into the
address field of the block termination record. If no entry address is
entered, then the address field of the termination record will consist of
Zeros. The termination record will be an S7, S8, or S9 record, depending on
the address entered. Refer to Appendix C for additional information on S-
records.

An optional offset may also be specified by the user in the <OFFSET> field.
The offset value is added to the addresses of the memory locations being
dumped, to come up with the address which is written to the address field of
the S-records. This allows the user to create an S-record file which will
load back into memory at a different location than the location from which it
was dumped. The default offset is zero.

CAUTION

IF AN OFFSET IS TO BE SPECIFIED BUT NO ENTRY ADDRESS IS TO BE SPECIFIED,
THEN TWO COMMAS (INCIDATING A MISSING FIELD) MUST PRECEDE THE OFFSET TO
KEEP IT FROM BEING INTERPRETED AS AN ENTRY ADDRESS.

Example 1: Dump memory from $20000 to $2002F to port 1.

133Bug> DU 20000 2002F <CR>
Effective address: 00020000
Effective address: 0002002F
133Bug>

Example 2: Dump 10 bytes of memory beginning at $30000 to the terminal screen
(port 0).

133Bug> DUO 30000:810 <CR>
Effective address: 00030000
Effective count : &l0
S0030000FC
S20E03000026025445535466084E4F7B
S9030000FC

133Bug>

49

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.11 DATA CONVERSION DC
DC <EXP> | <ADDR>

The DC command is used to simplify an expression into a single numeric value.
This equivalent value s displayed in its hexadecimal and decimal
representation. If the numeric value could be interpreted as a signed
negative number (i.e., if the most significant bit of the 32-bit internal
representation of the number is set), then both the signed and unsigned
interpretations are displayed.

DC can also be used to obtain the equivalent effective address of an MC68020
addressing mode.

Examples:

133Bug>DC 10 <CR>
00000010 = $10 = &16

133Bug>DC_&10-&20 <CR>
SIGNED : FFFFFFF6 = -$A = -&10
UNSIGNED: FFFFFFF6 = $FFFFFFF6 = 84294967286

133Bug>DC 123+8345+@67+%1100001 <CR>
00000314 = $314 = &788

133Bug>DC_(2*3*8) /4 <CR>
0000000C = $C = &l2

133Bug>DC 55&F <CR>
00000005 = $5 = &5

133Bug>DC_55>>1 <CR>
0000002A = $2A = &42

The subsequent examples assume A0=00030000 and the following data resides in
memory:

00030000 11111111 22222222 33333333 44444444 st = R133330DDD

133Bug>DC (A0) <CR>
00030000 = $30000 = &196608

133Bug>DC_([AO0]) <CR>
11111111 = $11111111 = &286331153

133Bug>DC_(4,A0) <CR>
00030004 = $30004 = &196612

133Bug>DC ([4,A0]) <CR>
22222222 = $22222222 = &572662306

48

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

DU
Now enter the command for 133Bug to dump the S-records to the port.
133Bug> DU 20000 2000F 'FILE1’ <CR>
Effective address: 00020000
Effective address: 0002000F
133Bug>
133Bug>IM <CR> (Go into transparent mode again.)
Escape character: $01="A
QUIT <CR> (Tell UPLOADS to quit Tooking for records.)
The UPLOADS utility now displays some more messages like this:
UPLOAD "S" RECORDS
Version Xx.y
Copyrighted by MOTOROLA, INC.
volume=Xxxxx
catTg=xxxx
file=FILEl
ext=MX
STATUS No error since start of program
Upload of S-Records complete.
= OFF <CR> (The VERSAdos prompt should return.)
(Log off of the EXORmacs.)
<AA> (Enter the escape character to return to)
133Bug> (133Bug.)

51

ET
@ MOTOROLA THE 133Bug DEBUGGER COMMAND S

DU

Example 3: Dump memory from $20000 to $2002F to host (port 1). Specify a
file name of "TEST" in the header record and specify an entry
point of $2000A.

133Bug> DU 20000 2002F ’TEST’ 2000A <CR>
Effective address: 00020000

Effective address: 0002002F

133Bug>

The following example shows how to upload S-records to a host computer (in
this case an EXORmacs running the VERSAdos operating system), storing them in
the file "FILE1.MX" which the user creates with the VERSAdos utility UPLOADS.

133Bug>TM <CR> (Go into transparent mode to establish)
Escape character: $01=AA (communication with the EXORmacs.)
<BREAK> (Press BREAK key to get VERSAdos login)
(prompt.)

(Togin) (User must log onto VERSAdos and enter the)
= (catalog where FILE1.MX will reside.)

"

=UPLOADS FILE1 <CR> (At VERSAdos prompt, invoke the UPLOADS)
(utility and tell it to create a file
(named "FILE1" for the S-records that will)

(be uploaded.)
The UPLOADS utility at this point displays some messages like the following:

UPLOAD "S" RECORDS
Version x.y
Copyrighted by MOTOROLA, INC.
volume=xxxx
catlg=xxxx
file=FILE1
ext=MX

UPLOADS Allocating new file

Ready for "S" records,...

= <AA> (When the VERSAdos prompt returns, enter)
133Bug> (the escape character to return to 133Bug.)

50

THE 133Bug DEBUGGER COMMAND SET
(::> MOTOROLA

3.14 GO DIRECT (IGNORE BREAKPOINTS) GD
GD [<ADDR>]

GD 1is used to start target code execution. If an address is specified, it is
placed in the target PC. Execution starts at the target PC address. As
opposed to GO, breakpoints are not inserted.

Once execution of the target code has begun, control may be returned to 133Bug
by various conditions:

a. The user pressed the ABORT or RESET switches on the MVME133 front panel.
b. An unexpected exception occurred.
c. By execution of the .RETURN TRAP #15 function.

Example: (The following program resides at $10000.)

133Bug>MD_10000;DI <CR>

00010000 2200 MOVE.L DO,D1
00010002 4282 CLR.L- D2
00010004 D401 ADD.B D1,D2
00010006 E289 LSR.L . :#$1,D1
00010008 66FA BNE.B $10004
0001000A E20A LSR.B #$1,D2
0001000C 55C2 SCS D2
0001000E 60FE BRA.B $1000E

133Bug>RM DO <CR>
Initialize DO and start target program:

DO =00000000 ? 52A9C. <CR>
133Bug>GD 10000 <CR>
Effective address: 00010000

To exit target code, press ABORT switch.

Exception: Abort

Format Vector = 007C

PC =0001000E SR =2711=TR:OFF S. 7 X...C

USP =0000F830 MSP =0000FC18 ISP*=0000FFF8 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =00052A9C D1 =00000000 D2 =000000FF D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFF8
0001000E 60FE BRA.B $1000E
133Bug>

Set PC to start of program and restart target code:

133Bug>RM _PC <CR>

PC =0001000E ? 10000. <CR>
133Bug>GD <CR>

Effective address: 00010000

53

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.13 EEPROM PROGRAMMING EEP
EEP <RANGE><ADDR> [;W]
options:

W - Word (default)

The EEP command is similar to the BM command in that it copies the contents of
the memory addresses defined by <RANGE> to EEPROM or another place in memory,
beginning at <ADDR>. However, the EEP command moves the data a word at a time
with a 15 millisecond delay between each data move. Also, <ADDR> must be a
word-aligned address.

NOTE

This command makes use of the MC68901
’D’ timer for the 15 millisecond delay.

Example 1: (Assumes EEPROMs installed in XU24 and XU36 (bank 2), and J7
configured for the right size EEPROMs. Refer to the MVME133
User’s Manual for jumper details. XU24 and XU36 are at addresses
starting at $XXF20000 and ending at or below $XXF3FFFF in the main
memory map, with the odd-byte chip in XU24 and the even-byte chip
in XU36. Note that 133Bug is in the EPROMs in XU31 and XU46 (bank
1), at $XXF00000 through $XXFIFFFF, with odd bytes in U31 and even
bytes in U46.)

133Bug>MD 21000:20;B <CR>
00021000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST!!
00021010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

133Bug>EEP 21000 2101F F20000 <CR>
Effective address: 00021000
Effective address: 0002101F
Effective address: 00F20000

133Bug>MD_F20000:10;W <CR>

00F20000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 2] 21 THIS IS A TEST!!
00F20010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
133Bug>

................

Example 2:

133Bug>EEP 21000:8 F20000:W <CR>
Effective address: 00021000
Effective count : &8

Effective address: 00F20000

133Bug>MD F20000:10;W <CR>

00F20000 54 48 49 53 20 49 53 20 41 20 54 45 53 54 21 21 THIS IS A TEST!!
00F20010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
133Bug>

52

N

THE 133Bug DEBUGGER COMMAND SET
(::) MOTOROLA

GN

Use the GN command to "trace" through the subroutine call and display the
results.

133Bug>GN_<CR>

Effective address: 00006008

Effective address: 00006004

At Breakpoint

PC =00006008 SR =2700=TR:OFF S. 7

USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =00000004 D1 =00000001 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00006008 2600 MOVE.L D0,D3

133Bug>

55

THE 133Bug DEBUGGER COMMAND SET
M) moToroLA ug

3.15 GO TO NEXT INSTRUCTION GN
GN

GN sets a temporary breakpoint at the address of the next instruction, that
is, the one following the current instruction, and then starts target code
execution. After setting the temporary breakpoint, the sequence of events is
similar to that of the GO command.

GN is especially helpful when debugging modular code because it allows the
user to "trace" through a subroutine cal] as if it were a single instruction.

Example: The following section of code resides at address $6000.

133Bug>MD_6000:4;DI <CR>

00006000 7003 MOVEQ.L #$3,D0
00006002 7201 MOVEQ.L #$1,D1
00006004 61000FFA BSR.W $7000
00006008 2600 MOVE.L DO0,D3
133Bug>

The following simple routine resides at address $7000.

133Bug>MD_7000:2;DI <CR>

00007000 D081 ADD.L D1,DO
00007002 4E75 RTS
133Bug>

Execute up to the BSR instruction.

133Bug>RM PC <CR>
PC =00000000 ? 6000. <CR>

133Bug>GT_6004 <CR>

Effective address: 00006004

Effective address: 00006000

At Breakpoint

PC =00006004 SR =2700=TR:0FF_S._7_

USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=. . CAAR=00000000
DO =00000003 D1 =00000001 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000

A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00006004 61000FFA BSR.W $7000
133Bug>

54

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

GO

Note that in this case breakpoints are inserted after tracing the first
instruction, therefore the first breakpoint is not taken.

Continue target program execution.

133Bug>G_<CR>

Effective address: 0001000E

At Breakpoint

PC =0001000E SR =2011=TR:0FF_S. 0 X...C

USP =0000F830 MSP =0000FC18 ISP*=00010000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =00052A9C D1 =00000000 D2 =000000FF D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00010000
0001000E 60FE BRA.B $1000E

Remove breakpoints and restart target code.

133Bug>NOBR_<CR>
BREAKPOINTS

133Bug>GO_10000 <CR>
Effective address: 00010000

To exit target code, press the ABORT switch.

Exception: Abort

Format Vector = 007C

PC =0001000E SR =2011=TR:OFF_S. 0 X...C

USP =0000F830 MSP =0000FC18 ISP*=0000FFF8 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =00052A9C D1 =00000000 D2 =000000FF D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =0000FFF8
0001000E 60FE BRA.B $1000E

57

M) mororoLa THE 133Bug DEBUGGER COMMAND SET

3.16 GO EXECUTE USER PROGRAM GO
GO [<ADDR>]

The GO command (alternate form "G") is used to initiate target code execution.
A11 previously set breakpoints are enabled. If an address is specified, it is
placed in the target PC. Execution starts at the target PC address.

The sequence of events is as follows:

First, if an address is specified, it is loaded in the target PC.

Then, if a breakpoint is set at the target PC address, the instruction
at the target PC is traced (executed in trace mode) .

3. Next, all breakpoints are inserted in the target code.

4. Finally, target code execution resumes at the target PC address.

N -
. e

At this point control may be returned to 133Bug by various conditions:

A breakpoint with 0 count was found.

The user pressed the ABORT or RESET switches on the MVME133 front panel.
An unexpected exception occurred.

By execution of the .RETURN TRAP #15 function.

= WN =

Example: (the following program resides at $10000.)
133Bug>MD _10000;DI <CR>

00010000 2200 MOVE.L DO,D1
00010002 4282 CLR.L D2
00010004 D401 ADD.B D1,D2
00010006 E289 LSR.L #$1,D1
00010008 66FA BNE.B $10004
0001000A E20A LSR.B #$1,D2
0001000C 55C2 SCS D2
0001000E 60FE BRA.B $1000E

133Bug>RM DO_<CR>
Initialize DO, set some breakpoints, and start target program:
DO =00000000 ? 52A9C. <CR>

133Bug>BR 10000, 1000E <CR>

BREAKPOINTS

00010000 0001000E

133Bug>G0_10000 <CR>

Effective address: 00010000

At Breakpoint

PC =0001000E SR =2011=TR:0FF_S. 0 X...C

USP =0000F830 MSP =0000FC18 ISP*=00010000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =00052A9C D1 =00000000 D2 =000000FF D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00010000
0001000E 60FE BRA.B $1000E

56

THE 133Bug DEBUGGER COMMAND SET
(::) MOTOROLA

GT

133Bug>GT_10006 <CR>

Effective address: 00010006

Effective address: 00010000

At Breakpoint

PC =00010006 SR =2711=TR:OFF_S. 7 X...C

USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =00052A9C D1 =00000029 D2 =00000009 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010006 E289 LSR.L #$1,D1

133Bug>

Set another temporary breakpoint at $10002 and continue the target program
execution.

133Bug>GT_10002 <CR>

Effective address: 00010006

At Breakpoint

PC =0001000E SR =2711=TR:OFF_S._ 7 X...C

USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =00052A9C D1 =00000000 D2 =000000FF D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
0001000E 60FE BRA.B $1000E

133Bug>

Note that a breakpoint from the breakpoint table was encountered before the
temporary breakpoint.

59

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.17 GO TO TEMPORARY BREAKPOINT GT
GT <ADDR>

GT allows the user to set a temporary breakpoint and then start target code
execution. A count may be specified with the temporary breakpoint. Control
is given at the target PC address. A1l previously set breakpoints are

enabled. The temporary breakpoint is removed when any breakpoint with 0 count
is encountered.

After setting the temporary breakpoint, the sequence of events is similar to
that of the GO command. At this point control may be returned to 133Bug by
various conditions:

A breakpoint with count 0 was found.

1.

2. The user pressed the ABORT or RESET switches on the MVME133 front panel.
3. An unexpected exception occurred.

4. By execution of the .RETURN TRAP #15 function.

Example: (The following program resides at $10000.)
133Bug>MD _10000;DI <CR>

00010000 2200 MOVE.L DO,D1
00010002 4282 CLR.L D2
00010004 D401 ADD.B D1,D2
00010006 E289 LSR.L #$1,D1
00010008 66FA BNE.B $10004
0001000A E20A LSR.B #$1,D2
0001000C 55C2 SCS D2
0001000E 60FE BRA.B $1000E

133Bug>RM DO <CR>

Initialize DO and set a breakpoint:

DO =00000000 ? 52A9C. <CR>

133Bug>BR_1000E <CR>
BREAKPOINTS

0001000E

133BUG>

Set PC to start of program, set temporary breakpoint, and start target code:

133Bug>RM_PC <CR>
PC =0001000E ? 10000. <CR>
133Bug>

58

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

HE

Press "RETURN" to continue <CR>
VE Verify S-Records
133Bug>HE TC <CR>

TC Trace on Change of Flow
133Bug>

61

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.18 HELP HE
HE [<COMMAND>]

HE is the 133Bug help facility. HE <CR> displays the command names of all
available commands along with thejr appropriate titles. HE <COMMAND> displays
only the command name and title for that particular command. Examples:

133Bug>HE <CR>
BF

Block Fill
BI Block Initialize
BM Block Move
BS Block Search
BO Boot Operating System
BH Boot Operating System and Halt
BR Breakpoint Insert
NOBR Breakpoint Delete
BV Block Verify
€S Checksum
DC Data conversion and expression evaluation
DU Dump S-Records
EEP EEPROM Programming
GO GO to target code
G "Alias" for previous command
GD Go Direct (no breakpoints)
GN Go and stop after next instruction
GT Go and insert temporary breakpoint
HE Help facility

I0C I/0 Control
I0P I/0 to Disk
Press "RETURN" to continue <CR>
I0P I/0 to Disk
10T I/0 "Teach"

LO Load S-Records

MD Memory Display

MM Memory Modify

M "Alias" for previous command
MS Memory Set

OF Offset Registers

PA Printer Attach

NOPA Printer Detach

PF Port Format

NOPF Port Detach
RESET Warm/Cold Reset

RD Register display

RM Register Modify

SD Switch directory

SET Set Time and Date

TA Terminal Attach

T Trace instruction

TC Trace on Change of Flow

1T Trace to temporary breakpoint
™ Transparent Mode

TIME Display Time and Date

60

D
@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.20 1/0 PHYSICAL (DIRECT DISK ACCESS) I0P
I0p

The IOP command allows the user to do a single physical read or write to disk.
When invoked, this command goes into a subcommand mode, prompting the user as
indicated 1in the following example. The user may change the displayed value
by typing a new value and a carriage return. The user may choose to keep the
displayed value and display the next line by typing a carriage return.

As the user enters values, a disk communication command packet is prepared by
the command with the entered values. After IOP has prompted the user for the
last parameter, a .DSKRD or .DSKWR trap routine is called to perform the
actual data transfer (refer to paragraphs on .DSKRD and .DSKWR in Chapter 5).

After reset, all parameters are initialized to certain default values.
However, any new values entered are remembered by the IOP command and are
displayed the next time that the IOP command is invoked.
The information that the user is prompted for is as follows:
a. Read/Write/Format
NOTE
The IOP command does not support
Format for the MVME320 Disk Controller.

Does the user wish to ...

1. Read from the disk into memory? (user enters "R")
2. MWrite data from memory to the disk? (user enters "W")
3. Format a track or the entire disk? (user enters "F")

b. Controller LUN =007

What is the Logical Unit Number (LUN) of the Controller to be used?
c. Device LUN =007?

What s the LUN of the Device of the particular controller that the user
wishes to access? If the device LUN specified does not appear for the
previously-specified controller, then an error results.

d. Memory Address =00003000?

If either Read or Write was selected, what is the starting address of the
block of memory to be used? This memory is either written with data from
the disk or else the data in the memory is copied out to the disk. The
default address is $3000 past the start of the 133Bug vector table. Refer
to paragraph 1.5 for an explanation of how the start of the user program
area is determined.

63

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.19 I/0 CONTROL FOR DISK 10C
I0C

The I0C command allows a user to send command packets directly to a disk
controller. The packet to be sent must already reside in memory and must
follow the packet protocol of the particular disk controller. This packet

protocol is outlined in the user’s manual for the disk controller module.
(Refer to paragraph 1.9.)

This command may be used as a debugging tool to issue commands to the disk

controller to 1locate problems with either drives, media, or the controller
itself.

When invoked, this command prompts for the controller and drive required. The
default controller LUN (CLUN) and device LUN (DLUN) when I0C is invoked are
those most recently specified for IOP, IOT, or a previous invocation of I0C.
An address where the controller command is located is also prompted for. The
power-up default for the packet address is the area which is also used by the
BO and IOP commands for building packets. 1I0C displays the command packet
and, if instructed by the user, sends the packet to the disk controller,
following the proper protocol required by the particular controller.

Example: Send the packet at $10000 to an MVME319 controller module configured
as CLUN #1. Specify an operation to the hard disk which is at DLUN #0.

133Bug>I0C <CR>
Controller LUN =00? 1 <CR>

Device LUN =007 <CR>

Packet address =000010F0? 10000 <CR>

00010000 02 19 15 00 10 01 00 02 01 00 3D 00 30000000 =40 o
00010010 00 00 00 00 03 00 00 00 00 00020003
Send Packet (Y/N)? Y <CR>

133Bug>

62

e

MMAND SET
@ MOTOROLA THE 133Bug DEBUGGER COMMAND SE

3.21 1/0 "TEACH" FOR CONFIGURING DISK CONTROLLER IoT
I0T [;H]

The IOT command allows the user to "teach" a new disk configuration to 133Bug
for use by the TRAP #15 disk functions. 10T lets the user modify the
controller and device descriptor tables used by the TRAP #15 functions for
disk access. Note that because 133Bug commands that access the disk use the
TRAP #15 disk functions, changes in the descriptor tables affect all those
commands. These commands include IOP, BO, BH, and also any user program that
uses the TRAP #15 disk functions.

Before attempting to access the disks with the IOP command, the user should
verify the parameters and, if necessary, modify them for the specific media
and drives used in the system.

Note that during a boot, the configuration sector is normally read from the
disk and the device descriptor table for the LUN used modified accordingly.
If the user desires to read/write using IOP from a disk that has been booted,
IOT will not be required, unless the system is reset.

IOT may be invoked with a "H" (Help) option specified. This option instructs
IOT to 1ist the disk controllers which are currently available to the system.

Example:

133Bug> IOT:;H <CR>
Disk Controllers Available
Lun Type Address # dev
0 VME320 $FFFFB00O 4
1 VME319 $FFFF0000 8
133Bug>

When invoked without the "H" option, the IOT command enters an interactive
subcommand mode where the descriptor table values currently in effect are
displayed one-at-a-time on the console for the operator to examine. The
operator may change the displayed value by entering a new value or may leave
it unchanged by typing only a carriage return. The user may return to a
previous parameter by typing a "A" followed by carriage return. A1l numerical
values are interpreted as hexadecimal numbers. Decimal values may be entered
by preceding the number with an "&".

The first two items of information that the user is prompted for are the
Controller LUN and the Device LUN (LUN = Logical Unit Number). These two LUNs
specify one particular drive out of many that may be present in the system.

If the Controller LUN and Device LUN selected do not correspond to a valid
controller and device, then I0T outputs the message "Invalid LUN" and the user
is prompted for the two LUNs again.

After the parameter table for one particular drive has been selected via a

Controller LUN and a Device LUN, IOT begins displaying the values in the
attribute fields, allowing the user to enter changes if desired.

65

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

10P
e. Starting Block =00000000?

What is the starting block number on the disk to use? The default is
block zero.

f. Number of Blocks=0002?

If either Read or Write was selected, how many blocks are to be
transferred? The default is two blocks.

After the carriage return is entered for the "number of blocks" field, then
the data transfer or format is initiated. If the data transfer is
unsuccessful, then an error status word is displayed. Refer to Appendix F for
an explanation of returned error status codes.

Example 1: The user desires to read blocks zero and one of floppy drive 2
into memory beginning at address $50000.

133Bug>I0P <CR>
Read/Write/Format =R? <CR>

Controller LUN =00? <CR>

Device LUN =00? 2 <CR>

Memory Address =00003000? 50000 <CR>
Starting Block =0000000? <CR>

Number of Blocks =0002? <CR>

133Bug>

64

@ MOTOROLA

m.

THE 133Bug DEBUGGER COMMAND SET

I0T

Precomp. Cylinder

This field specifies the cylinder number at which precompensation should
occur for this drive. This parameter is normally specified by the drive
manufacturer.

Reduced Write Current Cylinder

This field specifies the cylinder number at which the write current should
be reduced when writing to the drive. This parameter is normally
specified by the drive manufacturer.

Interleave Factor

This field specifies how the sectors are formatted on a track. Normally,
consecutive sectors in a track are numbered sequentially in increments of
I (interleave factor of 1). The interleave factor controls the physical
separation of Togically sequential sectors. This physical separation
gives the host time to prepare to read the next logical sector without
requiring the Toss of an entire disk revolution.

Spiral Offset

The spiral offset controls the number of sectors that the first sector of
each track is offset from the index pulse. This is used to reduce latency
when crossing track boundaries.

ECC Data Burst Length

This field defines the number of bits to correct for an ECC error when
supported by the disk controller.

Step Rate Code

The step rate is an encoded field used to specify the rate at which the

read/write heads can be moved when seeking a track on the disk. The
encoding is as follows:

Step Rate Winchester 5 1/4-1Inch 8-Inch
Code Hard Disks Floppy Floppy
000 0 msec 12 msec 6 msec
001 6 msec 6 msec 3 msec
010 10 msec 12 msec 6 msec
011 15 msec 20 msec 10 msec
100 20 msec 30 msec 15 msec

Single/Double DATA Density

Single (FM) or double (MFM) data density should be specified by typing S
or D, respectively.

67

@) MoToroLa THE 133Bug DEBUGGER COMMAND SET

I0T

The parameters and attributes that are associated with a particular device are

determined by a parameter and attribute mask that is a part of the device
definition.

The device that has been selected may have any combination of the following
parameters and attributes:

a. Sector Size:
0-128 1-256
2-512 3-1024

The physical sector size specifies the number of data bytes per sector.

b. Block Size:
0-128 1-256
2-512 3-1024

The block size defines the units in which a transfer count is specified

when doing a disk/tape transfer. The block size can be smaller, equal to,

or greater than the physical sector size, as Tong as the following holds
true:

The (Block Size)*(Number of Blocks)/(Physical Sector Size) must be an
integer.

c. Sectors/Track

The number of sectors per track may be specified to be any number in the
range of 0 to $FFFF.

5 1/4-inch floppy - 16 sectors per track
Winchester - 32 sectors per track

d. Starting Head

The starting head number may be specified as any number in the range 0 to
$FF.

e. Number of Heads

The physical number of heads on the drive is entered here. This number
must be in the range of 0 to $FF.

f. Number of Cylinders
The number of cylinders per disk may be specified to be any number in the
range 0 to $FFFF. For floppy disks, the numbers of cylinders depends on

the media size and the track density. General values for 5 1/4-inch
floppy disks are shown below:

48 tpi - 40 cylinders
96 tpi - 80 cylinders

66

M) moToroLA THE 133Bug DEBUGGER COMMAND SET

I0T

Example 2: Changing from a 40 Mb Winchester to a 70 Mb Winchester. (Remember,
reconfiguration such as this is only necessary when a user wishes
to read or write a disk which is different than the default using
the I0P command. Reconfiguration is normally done automatically
by the BO or BH command when booting from a disk which is
different from the default.)

133Bug>I0T <CR>

Controller LUN =00? <CR>
Device LUN =00? <CR>
Sector Size:

0-128 1-256

2-512 3-1024 =01? <CR>
Block Size:

0-128 1-256

2-512 3-1024 =01? <CR>
Sectors/Track =0020? <CR>
Starting Head =00? <CR>
Number of Heads =06? 8 <CR>

Number of Cylinders =033E? 400 <CR>
Precomp. Cylinder =0000? 401 <CR>
Reduced Write Current Cylinder=0000? <CR>

Interleave Factor =01? 0B <CR>
Spiral Offset =00? <CR>

ECC Data Burst Length=0000? Q00B <CR>
133Bug>

Example 3: Changing from Fujitsu drive to Fixed/Removable CDC drive. It is
necessary to reconfigure two devices, one corresponding to the
fixed disk and one corresponding to the removable disk of the CDC

drive.
133Bug>I0T <CR> (Fixed Disk)
Controller LUN =00? 2 <CR>
Device LUN =00? <CR>
Sector Size:
0-128 1-256
2-512 3-1024 =02? 1 <CR>
Block Size:
0-128 1-256
2-512 3-1024 =01? <CR>
Sectors/Track =0040? <CR>
Starting Head =00? 10 <CR>
Number of Heads =0A? 5 <CR>
Number of Cylinders =0337? <CR>
Interleave Factor =01? <CR>
Spiral Offset =007 <CR>
Gap 1 =10? 7 <CR>
Gap 2 =20? 8 <CR>
Spare Sectors Count =00? <CR>
133Bug>

69

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

I0T
n. Single/Double TRACK Density

Used to define the density across a recording surface. This usually
relates to the number of tracks per inch as follows:
48 tpi = Single Track Density
96 tpi = Double Track Density
o. Gap1l

This field contains the number of words of zeros that are written before
the header field in each sector during format.

p. Gap 2

This field contains the number of words of zeros that are written between
the header and data fields during format and write commands.

q. Gap 3

This field contains the number of words of zeros that are written after
the data fields during format commands.

r. Gap 4

This_ field contains the number of words of zeros that are written after
the last sector of a track and before the index pulse.

s. Spare Sectors Count
This field contains the number of sectors per track allocated as spare

sectors. These sectors are only used as replacements for bad sectors on
the disk.

Example 1: Examining the default parameters of a 5-1/4" floppy disk.
133Bug>I0T <CR>

Controller LUN =007 <CR>

Device LUN =00? 2 <CR>

Sector Size:

0-128 1-256

2-512 3-1024 =017 <CR>

Block Size:

0-128 1-256

2-512 3-1024 =01? <CR>
Sectors/Track =0010? <CR>

Number of Heads =02? <CR>

Number of Cylinders =0050? <CR>

Precomp. Cylinder =0028? <CR>

Step Rate Code =00? <CR>
Single/Double DATA density =D (S/D)? <CR>
Single/Double TRACK density=D (S/D)? <CR>

133Bug>

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

3.22 LOAD S-RECORDS FROM HOST Lo
LO [n] [<ADDR>] [;<X/-C/T>] [=<text>]

This command is used when data in the form of a file of Motorola S-records is
to be downloaded from a host system to the MVME133. The LO command accepts
serial data from the host and loads it into memory.

NOTE

The highest baud rate that can be used with the LO command
(downloader) is now 9600 baud, rather than 19200 baud.

The optional port number "n" allows the user to specify which port is to be
used for the downloading. If this number is omitted, port 1 is assumed.

The optional <ADDR> field allows the user to enter an offset address which is
to be added to the address contained in the address field of each record.
This causes the vrecords to be stored to memory at different locations than
would normally occur. The contents of the automatic offset register are not
added to the S-record addresses. If the address is in the range $0 to $1F and
the port number is omitted, enter a comma before the address to distinguish it
from a port number.

The optional text field, entered after the equals sign (=), is sent to the
host before 133Bug begins to look for S-records at the host port. This allows
the wuser to send a command to the host device to initiate the download. This
text should NOT be delimited by any kind of quote marks. Text is understood
to begin immediately following the equals sign and terminate with the carriage
return. If the host is operating full duplex, the string is also echoed back
to the host port by the host and appears on the user’s terminal screen.

In order to accommodate host systems that echo all received characters, the
above-mentioned text string is sent to the host one character at a time and
characters vreceived from the host are read one at a time. After the entire
command has been sent to the host LO keeps looking for a LF character from the
host, signifying the end of the echoed command. No data records are processed
until this LF is received. If the host system does not echo characters, LO
still keeps looking for a LF character before data records are processed. For
this reason, it is required in situations where the host system does not echo
characters, that the first record transferred by the host system be a header
record. The header record is not used but the LF after the header record
serves to break LO out of the Toop so that data records are processed.

The other options have the following effects:

-C option - 1Ignore checksum. A checksum for the data contained within an
S-record is calculated as the S-record is read in at the port. Normally,
this calculated checksum is compared to the checksum contained within the
S-record and if the compare fails an error message is sent to the screen

on completion of the download. If this option is selected, then the
comparison is not made.

71

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

I0T
133Bug>I0T <CR> (Removable Disk)
Controller LUN =02 <CR>
Device LUN =00? 1 <CR>
Sector Size:

0-128 1-256

2-512 3-1024 =017 <CR>
Block Size:

0-128 1-256

2-512 3-1024 =01? <CR>
Sectors/Track =0040? <CR>
Starting Head =00? <CR>
Number of Heads =00? 1 <CR>
Number of Cylinders =0337? <CR>
Interleave Factor =01? <CR>
Spiral Offset =00? <CR>
Gap 1 =7? <CR>
Gap 2 =8? <CR>
Spare Sectors Count =00? <CR>
133Bug>

70

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

Lo
7 65040004 4A00 TST.B DO
8 65040006 4E75 RTS
9 END
wxxxkx TOTAL ERRORS s

ddkkkkk TOTAL WARNINGS ==

Then the program was converted into an S-record file named TEST.MX as follows:
SO00F00005445535453335337202001015E

$30D650400007001D0884A004E75B3
$7056504000091

Load this file into MVME133 memory for execution at address $40000 as follows:

133Bug>TM <CR> (Go into transparent mode to establish)
Escape character: $01= *A (communication with the VME/10.)
<BREAK> (Press BREAK key to get VERSAdos Tlogin)
(prompt.)

(Togin) (User must log onto VERSAdos and enter the)
" (proper catalog to access the file TEST.MX)

= <MA> (Enter escape character to return to)
(133Bug prompt.)

133Bug>L0_-65000000 ;X=COPY TEST.MX,# <CR>
COPY TEST.MX,#
S00F00005445535453335337202001015E
$30D650400007001D0884A004E75B3
$7056504000091

133Bug>

The S-records are echoed to the terminal because of the "X" option.

The offset address of -65000000 was added to the addresses of the records in
TEST.MX and caused the program to be lToaded to memory starting at $40000. The
text "COPY TEST.MX,#" 1is a VERSAdos command line that caused the file to be
copied by VERSAdos to the VME/10 port which is connected with the MVME133 host
port.

133Bug>MD 40000:4;DI <CR>

00040000 7001 MOVEQ.L #1,DO
00040002 D088 ADD.L A0,DO
00040004 4A00 TST.B DO
00040006 4E75 RTS

133Bug>

The target PC now contains the entry point of the code in memory ($40000).

73

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

LO

X option - Echo. This option echoes the S-records to the user’s terminal as
they are read in at the host port.

T option - TRAP #15 code. This option causes LO to set the target register
D4 =’LO ’x, with x =$0C ($4C4F200C). The ASCII string ’LO ’ indicates
that this is the LO command; the code $0C indicates TRAP #15 support with
stack parameter/result passing and TRAP #15 disk support. This code can
be used by the downloaded program to select the appropriate calling
convention when invoking debugger functions, because some Motorola
debuggers use conventions different from 133Bug, and they set a different
code in D4.

The S-record format (refer to Appendix C) allows for an entry point to be
specified in the address field of the termination record of an S-record block.
The contents of the address field of the termination record (plus the offset
address, if any) are put into the target PC. Thus, after a download, the user
need only enter G or GO instead of G <addr> or GO <addr> to execute the code
that was downloaded.

If a non-hex character is encountered within the data field of a data record,
then the part of the record which had been received up to that time is printed
to the screen and the 133Bug error handler is invoked to point to the faulty
character.

As mentioned, if the embedded checksum of a record does not agree with the
checksum calculated by 133Bug AND if the checksum comparison has not been
disabled via the "-C" option, then an error condition exists. A message is
output stating the address of the record (as obtained from the address field
of the vrecord), the calculated checksum, and the checksum read with the
record. A copy of the record is also output. This is a fatal error and
causes the command to abort.

When a Toad is in progress, each data byte is written to memory and then the
contents of this memory location are compared to the data to determine if the
data stored properly. If for some reason the compare fails, then a message is
output stating the address where the data was to be stored, the data written,
and the data read back during the compare. This is also a fatal error and
causes the command to abort.

Because processing of the S-records is done character-by-character, any data
that was deemed good will have already been stored to memory if the command
aborts due to an error.

Examples: Suppose a host system (a VME/10 with VERSAdos in this case) was
used to create a program that looks like this:

1 * Test Program.

2 *

3 65040000 ORG $65040000
4

5 65040000 7001 MOVEQ.L #1,DO

6 65040002 D088 ADD.L A0,DO

72

M) moToroLA

Example 3:

133Bug>md 50008;di <CR>

00050008
0005000C
00050012
00050016
0005001A
0005001C
0005001E
00050020
133Bug>

46FC2700
61FF0000023E
4E7AD801
41ED7FFC
5888

2E48

2048
13C7FFFB003A

Example 4:

133Bug>md 5000;d <CR>

00005000
00005008
00005010
00005018
00005020
00005028
00005030
00005038
133Bug>

0_3F6_44C1DOFO47FC2= 2.
0_423 DAEFF04800000= 1.
0-000_0000000000000= 0.
0-40370000000000000= 1.
1_3FF_0000000000000=-1.
0-000_00000FFFFFFFF= 2.
0_44D_FDE9F10A8D361= 6.
0_3C0_79CA10C924223= 1.

THE 133Bug DEBUGGER COMMAND SET

MOVE.W #9984,SR
BSR.L #5024C
MOVEC.L VBR,A5

LEA.L 32764 (A5),A0
ADDQ.L #4,A0

MOVE.L A0,A7

MOVE.L A0,A6

MOVE.B D7, ($FFFBOO3A).L

4777000000000002_E-0003
2749000000000000 E+0011
0000000000000000_E+0000
6000000000000000_E+0001
0000000000000000_E+0000
1219957904712067 E+0314
0200000000000000_E+0023
5999999999999999 E+0019

75

MD

Q) MOTOoROL 4 THE 133Bug DEByGerp COMMAND sET

3.23 MEMORY DISpLAY MD
MD[s)] <ADDR>[:<COUNT> | <ADDR>][; [BIWILISIDIXIPIDI]]

This Command jg Used to disp]ay the Contents of multiple memory Iocations all
at once, MD accepts the fo]]owing data types:

Integer Data Type F]oating Point Data Types
B - Byte S: - Single Precis;;;_-h_
W - Worq D - Doub7e Precision
L - Longworg X - Extended Precision

P - Packed Decimai

The default data type is word, Also, for the integer data types, the data js
always disp]ayed in hex along with its ASCII representation. The DI option
€nables the Resident MC68020 disassemb]er. No othep option jg allowed jf DI

Causes the Command tgq re-execute, disp]aying an equal number of data items op
i inni ress,

CAUTION

IF MD REFERENCES_NON-EXISTING MEMORY, THE SYSTEM HANGS yp AND DISPLAYs
THE MESSAGE "VMEbus Bus Time-outw, PRESSING THE ABORT SWITCH DOEs
NOT RECOVER SYSTEM OPERATION, BUT PRESSING THE RESET SWITCH DOEs.

Example 1.

133Bug>md 12000 <CRs

00012000 2800 1942 2900 1942 2800 1842 2900 2846 (..B)..B(..B).(F
ug> <CRr

00012010 FC2o 0050 EDo7 9F61 FFoo 000A E860 Fo60 | .Pm..a....h’p’

Example & Assume the fo]]owing Processor state: A2=00013500,05=53F00127

133Bugsmqg (a2,d5):&19;b <CR>
00013627 zF 82 C5 9810 33 7A DF o] 6C 3D 4B 59 OF oF O..E..3z_.1=KP..

00
00013637 31 ap gg 1+
133Bugs

74

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

MM

The DI option enables the one-line assembler/disassembler. A1l other options
are invalid if DI is selected. The contents of the specified memory location
are disassembled and displayed and the user is prompted with a question mark
("?") for input. At this point the user has three options:

1. Enter <CR>. This closes the present location and continues with
disassembly of next instruction.

2. Enter a new source instruction followed by <CR>. This invokes the
assembler, which assembles the instruction and generates a "listing
file" of one instruction.

3. Enter .<CR>. This closes the present Tocation and exits the MM command.
If a new source Tine is entered (choice 2 above), the present line is erased
and replaced by the new source line entered. If a hardcopy terminal is being
used, port O should be reconfigured for hardcopy operation with the Port
Format (PF) command. In the hardcopy mode, a line feed is done instead of
erasing the line.

If an error is found during assembly, the symbol "A" appears below the field
suspected of the error, followed by an error message. The location being
accessed is redisplayed.

For additional information about the assembler, refer to Chapter 4.

The examples below were made in the hardcopy mode.

Example 3: Assemble a new source line.

133Bug>mm_10000;di <CR>

00010000 46FC2400 MOVE.W #9216,SR ? divs.w -(a2),d2 <CR>
00010000 85E2 DIVS.W -(A2),D2
00010002 2400 MOVE.L DO,D2 ?

Example 4: New source line with error.

00010008 4E7AD801 MOVEC.L VBR,A5 ? bchq #$12,9(a5,d6)) <CR>
00010008 BCHG #12,9(A5,D6))
A

% Unknown Field *
00010008 4E7AD801 MOVEC.L VBR,A5 ?

Example 5: Step to next location and exit MM.

133Bug>m _1000c:di <CR>

0001000C 000000FF OR.B #255,D0 ? <CR>
00010010 20C9 MOVE.L Al,(A0)+ ? .<CR>
133Bug>

77

@ MoToROLA THE 133Bug DEBUGGER COMMAND SET
3.24 MEMORY MoDIFY MM
MM <ADDR> [5[[BIWILISIDIXIP][A][N] 11[D1]]

This command is used to examine and change memory Tocations. MM accepts the
following data types:

Integer Data Type

B - Byte S - Single Precision
W - Word D - Double Precision
L - Longword X - Extended Precision
P - Packed Decimal
The default data type is word. The MM command (alternate form ") reads and

displays the contents of memory at the specified address and prompts the user
with a question mark ("?")." The user may enter new data for the memory
lTocation, followed by <CR>, or may - simply enter <CR>, which leaves the
contents unaltered.
opened.

The user may also enter one of several] special characters, either at the
prompt or after writing new data, which change what happens when the carriage
return is entereq. These special characters are as follows:

"V' The next successive memory location is opened. (This is the default.
or It is in effect whenever MM js invoked and remains in effect until
"yt changed by entering one of the other special characters.)

"A" MM backs Up and opens the previous memory Tlocation.
"=" MM ré-opens the same memory location (this is useful for examining 1/0
registers or memory Tocations that are changing over time).

Terminates MM command. Contro] returns to 133Bug.

The N option of the MM command disables the read portion of the command. The
A option forces alternate location accesses only.

Example 1:
133Bug>mm 10000 <CR> Access Tocation 10000.
00010000 12347 <CR>

00010002 567827 4321 <CR>
00010004 9ABC? 8765 <CR>
00010002 43212 <CR>
00010000 12347 abed. <CR>

Modi fy memory.
Modi fy memory and backup.

Modify memory and exit.

Example 2:

133Bug>mm 10001;7a <CR>
00010001 CD432187? <CR>

00010009 000680107 68010+10= <CR>
00010009 00068020? <CR>

00010009 000680207

<CR>

Longword access to Tocation 10001
(Alternate location accesses).
Modify and reopen location.

Exit MM.

76

3 THE 133Bug DEBUGGER COMMAND SET
@ MOTOKOLA

3.25 MEMORY SET MS
MS <ADDR> {Hexadecimal number} / {’string’}

Memory Set is used to write data to memory starting at the specified address.
Hex numbers are not assumed to be of a particular size, so they can contain
any number of digits (as allowed by command line buffer size). If an odd
number of digits are entered, the least significant nybble of the last byte
accessed will be unchanged.

ASCII strings can be entered by enclosing them in single quotes (). To 3
include a quote as part of a string, two consecutive quotes should be entered.

Example: Assume that memory is jnitially cleared:

133Bug>ms 25000 0123456789abcDEF *This is ’?133Bug’’’ 23456 <CR>
133Bug>md 25000:20;b <CR>

00025000 01 23 45 67 89 AB CD EF 54 68 69 73 20 69 73 20 .#Eg.+MoThis is
00025010 27 31 33 33 42 75 67 27 23 45 60 00 00 00 00 00 >133Bug’ #E*
133Bug>

79

M) moToroLA

Example 6:

133Bug>m _7000;x <CR>

00007000 0_0000_FFFFFFFFO0000000?
0000700C 1_7FFF_00000000FFFFFFFF?
00070018 0_0000_FFFFFFFF00000000?
00070018 0_404D FEF4F885469B08807
0007000C 0_001A_F000000000000000?
00070000 1 3C10 8478200000000000?
133Bug>

THE 133Bug DEBUGGER COMMAND SET

1 _3C10_84782 <CR>

0_001A_F <CR>
6.02E23= <CR>

MM

7T

(M) moToROLA

THE 133Bug DEBUGGER COMMAND SET

OF

4. Any offset register can be set as the automatic register.

5. The automatic register is always added to every absolute address argument
of every 133Bug command where there is not an offset register explicitly
called out.

6. There is always an automatic register. A convenient way to disable the
effect of the automatic register is by setting R7 as the automatic
register. Note that this is the default condition.

Examples:

Display offset registers.

133Bug>0F <CR>

RO
R2
R4
R6

=00000000 00000000 R1
=00000000 00000000 R3
=00000000 00000000 R5
=00000000 00000000 R7*

00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000

wowonon

Modify some offset registers.

133Bug>0F_R0O <CR>

RO
R1
RO

=00000000 00000000? 20000 200FF <CR>
=00000000 000000007 25000:200% <CR>
=00020000 000200FF? . <CR>

Look at location $20000.

133Bug>M_20000:DI <CR>

00000+R0 41F95445 5354 LEA.L ($54455354).L,A0 . <CR>
133Bug>M R0O;DI <CR>

00000+R0 41F95445 5354 LEA.L ($54455354).L,A0 . <CR>
133Bug>

Set RO as the automatic register.

133Bug>0F _RO;A <CR>
R0*=00020000 000200FF? . <CR>

To look at location $20000.

133Bug>M 0;DI <CR>
00000+R0 41F95445 5354 LEA.L ($54455354).L,A0 . <CR>

133Bug>

To look at location 0, override the automatic offset.

133Bug>M _0+R7:DI <CR>

00000000 FFF8 DC.W $FFF8 . <CR>
133Bug>

81

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

3.26 OFFSET REGISTERS DISPLAY/MODIFY OF
OF [Rn[;A] 1]

OF allows the user to access and change pseudo-registers called offset
registers. These registers are used to simplify the debugging of relocatable
and position-independent modules (refer to paragraph 2.1.1.2.2).

There are eight offset registers RO-R7, but only RO-R6 can be changed. R7
always has both base and top addresses set to 0. This allows the automatic
register function to be effectively disabled by setting R7 as the automatic
register.

Each offset register has two values: base and top. The base is the absolute
least address that will be used for the range declared by the offset register.
The top address is the absolute greatest address that will be used. When
entering the base and top, the user may use either an address/address format
or an address/count format. If a count is specified, it refers to bytes. If
the top address 1is omitted from the range, then a count of IMb is assumed.
The top address must equal or exceed the base address. Wrap-around is not
permitted.

Command usage:

OF - To display all offset registers. An asterisk indicates which
register is the automatic register.

OF Rn - To display/modify Rn. The user can scroll through the registers in
a way similar to that used by the MM command.

OF Rn;A - To display/modify Rn and set it as the automatic register. The
automatic register is one that is automatically added to each
absolute address argument of every command except if an offset
register is explicitly added. An asterisk indicates which register
is the automatic register.

Range entry: Ranges may be entered in three formats: base address alone,
base and top as a pair of addresses, and base address followed
by byte count. Control characters "A", "y", "y", "=" and "."
may be wused. Their function is identical to that in Register
Modify (RM) and Memory Modify (MM) commands.

Range syntax: [<base address> [<top address>]] [*|v]=].]

or
[<base address> [’:> <byte count> 1] [*|v]=].]
Offset register rules:
1. At power up and cold start reset, R7 is the automatic register.

2. At power-up and cold start reset, all offset registers have both base and
top addresses preset to 0. This effectively disables them.

3. R7 always has both base and top addresses set to 0; it cannot be changed.

80

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

3.28 PORT FORMAT/PORT DETACH PF
NOPF

PF[n]

NOPFn

Port Format (PF) allows the user to examine and change the serial input/output
environment. PF may be used to display a Tlist of the current port
assignments, configure a port that is already assigned, or assign and
configure a new port. Configuration is done interactively, much 1like
‘modifying registers or memory (RM and MM commands). An interlock is provided

prior to configuring the hardware -- the user must explicitly direct PF to
proceed.

ONLY NINE PORTS MAY BE ASSIGNED AT ANY GIVEN TIME. PORT NUMBERS MUST BE IN
THE RANGE 0 TO $1F.

3.28.1 Listing Current Port Assignments

Port Format 1lists the names of the module (board) and port for each assigned
port number (LUN) when the command is invoked with the port number omitted.

Example:

133Bug>PF_<CR>

Current port assignments: (Port #: Board name, Port name)

[00: VME133- "DEBUG"] [Ol: VME133- "RS232"] [02: VME133- "RS485"]
133Bug>

3.28.2 Configuring a Port

The primary use of Port Format is changing baud rates, stop bits, etc. This
may be accomplished for assigned ports by invoking the command with the
desired port number. Assigning and configuring may be accomplished
consecutively. Refer to paragraph 3.28.4, Assigning a New Port.

When Port Format is invoked with the number of a previously assigned port, the
interactive mode is entered immediately. To exit from the interactive mode,
enter a period by itself or following a new value/setting. While in the
interactive mode, the following rules apply:

Only listed values are accepted when a list is shown. The sole exception
is that upper- or lowercase may be interchangeably used when a Tist is
shown. Case takes on meaning when the letter itself is used, such as XON
character value.

A Control characters are accepted by hexadecimal value or by a letter
preceded by a caret (i.e., Control-A would be "AA").

The caret, when entered by itself or following a value, causes Port
Format to issue the previous prompt after each entry.

83

R COMMAND SET
@ MOTOROLA THE 133Bug DEBUGGE D

3.27 PRINTER ATTACH/DETACH PA
NOPA

PA [n]

NOPA [n]

These two commands "attach" or "detach" a printer to the user-specified serial
port. Multiple printers may be attached. When the printer is attached,
everything that appears on the system console terminal is also echoed to the
“"attached" port. PA is used to attach, NOPA is used to detach. If no port is
specified, PA does not attach any port, but NOPA detaches all attached ports.

If the port number specified is not currently assigned, PA displays a message.

If NOPA is attempted on a port that is not currently attached, a message is
displayed.

The port being attached must already be configured. This is done using the

Port Format (PF) command. This is done by executing the following sequence
prior to "PAn".

133Bug>PF3 <CR>

Logical unit $03 unassigned

Name of board? VME0O50 <CR>

Name of port? PTR <CR>

Port base address = $FFFF1080? <CR>

Auto Line Feed protocol [Y,N] = N? Y. <CR>
0K to proceed (y/n)? Y <CR>

133Bug> '

For further details, refer to the PF command.

Examples:

CONSOLE DISPLAY: PRINTER OUTPUT:

133Bug>PA7 <CR>

(attaching port 7) (printer now attached)

133Bug>HE NOPA <CR> 130Bug>HE NOPA -

NOPA Printer detach - NOPA Printer detach
133Bug>NOPA <CR> 133Bug>NOPA

(detach all attached printers) (printer now detached)
133Bug>NOPA <CR>

No printer attached

133Bug>

82

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

PF
NOPF

Number of stop bits:
Only 1 and 2 stop bits are supported.
Synchronization type:

Because the debugger is a polled serial input/output environment, most users
use only asynchronous communication. The synchronous modes are permitted.

Synchronization character values:
Any 8-bit value or ASCII character may be entered.
Master or Slave:

For RS-485 type ports only, the data direction may be selected as Master (M)
or Slave (S). The default is S.

Automatic software handshake:

Current drivers have the capability of responding to XON/XOFF characters sent
to the debugger ports. Receiving an XOFF causes a driver to cease
transmission until an XON character is received. None of the current drivers
utilize FIFO buffering, therefore, none initiate an XOFF condition.

Software handshake character values:

The values used by a port for XON and XOFF may be redefined to be any 8-bit
value. ASCII control characters or hexadecimal values are accepted.

3.28.4 Assigning a New Port

Port Format supports a set of drivers for a number of different modules and
the ports on each. To assign one of these to a previously unassigned port
number, invoke the command with that number. A message is then printed to
indicate that the port is unassigned and a prompt is issued to request the
name of the module (such as VME133, VME050, etc.). Pressing the RETURN key on
the console at this point causes PF to 1ist the currently supported modules
and ports. Once the name of the module (board) has been entered, a prompt is
issued for the name of the port. After the port name has been entered, Port
Format attempts to supply a default configuration for the new port.

Once a valid port has been specified, default parameters are supplied. The
base address of this new port is one of these default parameters. Before
entering the interactive configuration mode, the user is allowed to change the
port base address. Pressing the RETURN key on the console retains the base
address shown.

85

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

PF
NOPF

v Either upper- or lowercase "v" causes Port Format to resume prompting in
or the original order (i.e., Baud Rate, then Parity Type, ...).

= Entering an equal sign by itself or when following a value causes PF to
issue the same prompt again. This is supported to be consistent with the
operation of other debugger commands. To resume prompting in either
normal or reverse order, enter the Tletter "v" or a caret "A",
respectively.

Entering a period by itself or following a value causes Port Format to
exit from the interactive mode and issue the "OK to proceed (y/n)?".

<CR> Pressing return without entering a value preserves the current value and
causes the next prompt to be displayed.

Example:

133Bug>PF_1 <CR>

Baud rate [110,300,600,1200,2400,4800,9600,19200] = 9600? <CR>

Even, 0dd, or No Parity [E,O,N] = N? <CR>

Char width [5,6,7,8] = 8?7 <CR>

Stop Bits [1,2] = 1? 2 <CR> (new value entered)

(the next response is to demonstrate reversing the order of prompting)
Async, Mono, Bisync, Gen, SDLC, or HDLC [A,M,B,G,S,H] = A A <CR>

Stop Bits [1,2] = 2? . <CR> (value acceptable, exit interactive mode)
OK to proceed (y/n)? Y (carriage return not required)
133Bug>

3.28.3 Parameters Configurable by Port Format

Port base address:

Upon assigning a port, the option is provided to set the base address. This
is useful for support of modules with adjustable base addressing, such as the
MVMEO50. Entering no value selects the default base address shown.

Baud rate:

The wuser may choose from the following: 110, 300, 600, 1200, 2400, 4800,
9600, 19200. IF A NUMBER BASE IS NOT SPECIFIED, THE DEFAULT IS DECIMAL, NOT
HEXADECIMAL.

Parity type:

Parity may be even (choice E), odd (choice 0), or disabled (choice N).
Character width:

The user may select 5-, 6-, 7-, or 8-bit characters.

84

THE 133Bug DEBUGGER COMMAND SET
(::) MOTOROLA

3.29 REGISTER DISPLAY RD
RD [+|-]=1[<REG1>[-<REG2>1{[/[+|-|=1[<REG1>[-<REG2>]]]}]

The RD command is wused to display the target state, that is, the processor
state associated with the target program (refer to GO command). The
instruction pointed to by the target PC is disassembled and displayed also.
The optional arguments allow the user to enable or disable the display of any
register or group of registers. This is useful for showing only the registers
of dinterest, minimizing unnecessary data on the screen; and also in saving

screen space, which is reduced particularly when coprocessor registers are
displayed.

The arguments are as follows:
ijs a qualifier indicating that a register range is to be added.

is a qualifier indicating that a register range is to be removed.
is a qualifier indicating that a register range is to be set.

[

The qualifier is applied to the next register range only. If no qualifier is
specified, a + qualifier is assumed.

/ is a required delimiter between register ranges.
<REG1> is the first register in a range of registers.
-<REG2> is the last register in a range of registers.

The command 1line arguments are parsed from left to right, with each field
being processed after parsing, thus, the sequence in which qualifiers and
registers are organized has an impact on the resultant register mask.

The processor registers are:

NUMBER AND TYPE OF REGISTERS MNEMONICS
8 A - Address Registers (A0-A7)
8 D - Data Registers (D0-D7)
10 S - System Registers (PC,SR,USP,MSP,ISP,VBR,SFC,DFC,CACR,CAAR)

Total: 26 Registers. Note that A7 represents the active stack pointer, which
leaves 25 different registers.

Example 1:

133Bug>rd <CR>

PC =00003000 SR =2700=TR:OFF S. 7
USP =0000F830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000

DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00003000 424F DC.W $424F

133Bug>

87

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

PF
NOPF

If the configuration of the new port is not fixed, then the interactive
configuration mode is entered. Refer to paragraph 3.28.2 above regarding
configuring assigned ports. If the new port does have a fixed configuration,
then Port Format issues the "OK to proceed (y/n)?" prompt immediately.

Port Format does not initialize any hardware until the user has responded with
the Tletter "Y" to prompt "OK to proceed (y/n)?". Pressing the BREAK key on
the console any time prior to this step or responding with the letter "N" at

the prompt 1leaves the port unassigned. This 1is only true of ports not
previously assigned.

Example: Assigning port 3 to the MVMEO50 printer port.

133Bug>PF 3 <CR>

Logical unit $03 unassigned

Name of board? <CR> (cause PF to list supported modules (boards), ports)
Boards and ports supported:

VME133: DEBUG,RS232,RS485

VMEO50: 1,2,PTR

Name of board? VMEO50 <CR> (uppercase or lowercase accepted)

Name of port? PTR <CR>

Port base address = $FFFF1080? <CR>

Auto Line Feed protocol [Y,N] = N? . <CR>

(interactive mode not entered because hardware has fixed configuration)
OK to proceed (y/n)? Y

133Bug>

3.28.5 NOPF Port Detach

The NOPF command, "NOPFn", unassigns the port whose number is "n". Only one

port may be unassigned at a time. Invoking the command without a port number,
"NOPF", does not unassign any ports.

86

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

RD

The RD command is also used to display the MC68881 floating point coprocessor
(FPC) registers. An internal mask indicates which registers are displayed
when RD <CR> is executed. At reset time, this mask is configured to display
only the processor registers. To change the mask and enable the display of
FPC registers, type: rd +fpc<CR>. This changes the mask and at the same time
displays all the registers. Afterwards, every time that RD <CR> is typed, all
the MPU and all the FPC registers are displayed. The floating point data
registers are always displayed in extended precision and in scientific
notation format. To change the mask and disable the display of FPC registers,
type: RD -fpc<CR>. Note that this mask is also used by all the exception
handler routines, including the trace and breakpoint exception handlers.

Example 2:

133Bug>rd +fpc <CR>

PC =00003000 SR =2700=TR:OFF S. 7

USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR =00000000
DO =00000000 DI =00000000 D2 =00000000 D3 ~ =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 ~ =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
FPCR=00000000 FPSR=00000000-(CC=....) FPIAR=00000000
FPO =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFFF

FP1 =0 7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF

FP2 =0 7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF
FP3 =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFFF
FP4 =0 7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF
FP5 =0 7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF
FP6 =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFFF
FP7 =0 7FFF_FFFFFFFFFFFFFFFF= O FFFFFFFFFFFFFFFF_E-OFFF
00003000 4AFC TLLEGAL

133Bug>

The floating point status register display includes a mnemonic portion for the
condition codes. The bit name appears (N, Z, I, NAN) if the respective bit is
set, otherwise a "." indicates that it is cleared.

Example 3: To add FPO and FPSR to the default display.

133Bug>RD_FPO/FPSR <CR>

PC =00003000 SR =2700=TR:OFF_S. 7

USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR =00000000
DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
FPSR=00000000-(CC=....

FPO =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFFF
00003000 4AFC ILLEGAL

133Bug>

89

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

RD
NOTES

An asterisk following a stack pointer name indicates that it is the active
stack pointer. The status register includes a mnemonic portion to help in
reading it:

TRACE BITS
Tl TO MNEMONIC DESCRIPTION i

0 0 TR:OFF Trace off

0 1 TR:CHG Trace on change of flow
1 0 TR:ALL Trace all states

1--1: TR:INV Invalid mode

S, M bits: The bit name appears (S,M) if the respective bit is set, otherwise
a "." indicates that it is cleared.

Interrupt Mask: A number from 0 to 7 indicates the current processor priority
level.

Condition Codes: The bit name appears (X,N,Z,V,C) if the respective bit is
set, otherwise a "." indicates that it is cleared.

The source and destination function code registers (SFC, DFC) include a two
character mnemonic:

0 XX Undefined

1 uD User Data

2 up User Program

3 XX Undefined

4 XX Undefined

5 SD Supervisor Data

6 SP Supervisor Program
7 CS CPU Space

The CACR register shows mnemonics for two bits: Enable and Freeze. The bit
name (E, F) appears if the respective bit is set, otherwise a "." indicates
that it is cleared.

88

THE 133Bug DEBUGGER COMMAND SET
(M) moTOROLA

3.30 COLD/WARM RESET RESET
RESET

The RESET command allows the user to specify the level of reset operation that
will be in effect when a RESET exception is detected by the processor. A
reset exception can be generated by pressing the RESET switch on the MVME133
front panel, or by executing a software reset.

Two RESET Tevels are available:

COLD - This 1is the standard level of operation, and is the one defaulted
to on power-up. In this mode, all the static variables are
initialized every time a reset is done.

WARM - In this mode, all the static variables are preserved when a reset
exception occurs. This 1is convenient for keeping breakpoints,
offset register values, the target register state, and any other
static variables in the system.

NOTE

If the MVME133 is the system controller, pressing the RESET
switch resets all the modules in the system, including disk
controllers like the MVME320 or MVME360. This may cause the
disk controller configuration to be out of phase with respect
to the disk configuration tables in memory.

Example:

133Bug>RESET <CR> Arm to be set to warm start, the
Cold/Warm Start [C,W] = C? W <CR> next time a reset is performed.
Execute [Y,N] ? Y <CR> Do a software reset now, actually

forcing a warm start.
Copyright Motorola Inc. 1986, A1l Rights Reserved
VME133 Monitor/Debugger Version 1.0 - 5/1/86

WARM Start
133Bug>

91

(::) MOTOROLA

Example 4: To remove D3-D5 and A2 from the display.

133Bug>RD_-D3-D5/-A2 <CR>
PC =00003000 SR =2700=TR:0FF S. 7

USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=. . CAAR =00000000
D0 =00000000 D1 =00000000 D2 =00000000 D6 =00000000
D7 =00000000 A0 =00000000 Al =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
FPSR=00000000- (CC=....)

FPO =0_7FFF_FFFFFFFFFFFFFFFF= O.FFFFFFFFFFFFFFFF_E-OFFF
00003000 4AFC ILLEGAL

133Bug>

Example 5: To set the display to D6 and A3 only.

133Bug>RD_=D6/A3 <CR>
D6 =00000000 A3 =00000000

00003000 4AFC ILLEGAL
133Bug>

Note that the above sequence sets the display to
register A3 to the display.

Example 6: To restore all the MPU registers.

133Bug>rd +mpu <CR>

PC =00003000 SR =2700=TR:OFF S. 7

USP =00003830 MSP =00003C18 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=. . CAAR =00000000
DO =00000000 D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00003000 4AFC ILLEGAL

133Bug>

Note that an equivalent command would have been RD PC-A7.

90

THE 133Bug DEBUGGER COMMAND SET

RD

D6 only and then adds

@ MOTOROLA

133Bug>rd +fpc <CR>

PC =00002000 SR =2700=TR:OFF S. 7_
USP =00003830 MSP =00003C18 ISP*=00004000 VBR

SFC =0=XX DFC =0=XX CACR=0=..

DO =00000000 D1 =00000000 D2
D4 =00000000 D5 =00000000 D6
A0 =00000000 Al =00000000 A2
A4 =00000000 A5 =00000000 A6

.....

=00000000 D3
=00000000 D7
=00000000 A3
=00000000 A7

THE 133Bug DEBUGGER COMMAND SET

=00000000
=00000000
=00000000
=00000000
=00000000
=00004000

FPCR=00000000 FPSR=0F000000-(CC=NZI[NAN]) FPIAR=00000000
6.6258385370745493_E-3530
1.2500000000000000_E+0003

-1.4995117187500000_E+0000

-3.0000000000000000_E-0261
5.6400000000000000_E+0002
2.6012612226385672_E+0154

i E 3.1415000000000000_E+0000

FP7 =1 3F88 E9A2FOB8D678C318=-2.7463836900000000_E-0036

FPO =0_1234_5000000000000000=
FP1 =0_4009_9C40000000000000=
FP2 =1_3FFF_BFF0000000000000=
FP3 =1 3C9D_BCEECF12D061BED9=
FP4 =0_4008_8D00000000000000=
FP5 =0 _41FF_F855800000000000=
FP6 =0 4000 C90E5604189374BC=

00002000 00000000 OR.B

133Bug>

93

#0,D0

RM

D GER COMMAND SET
@ MOTOROLA THE 133Bug DEBUGGER C

3.31 REGISTER MODIFY RM
RM <REG>
RM allows the user to display and change the target registers. It works in
essentially the same way as the MM command, and the same special characters
are used to control the display/change session (refer to the MM command).

NOTE

<REG> is the mnemonic for the particular
register, the same as it 1is displayed.

Example 1:

133Bug>RM D5 <CR>

D5 =12345678? ABCDEF~ <CR> Modify register and back up.
D4 =00000000? 3000. <CR> Modify register and exit.
133Bug>

Example 2:

133Bug>rm_sfc <CR>

SFC =7=CS ? 1= <CR> Modify register and reopen.
SFC =1=UD ? . <CR> Exits

133Bug>

The RM command is also used to modify the MC68881 floating point coprocessor
registers.

Example 3 (continues on next page):

133Bug>rm_fpsr <CR>
FPSR =00000000-(CC=....) ? F000000 <CR>
FPIAR=00000000 ? <CR> N

FPO =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFF ? 0_1234 5 <CR>

FP1 =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFF ? 1.25E3 <CR>

FP2 =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFF ? 1_7F_3FF<CR>

FP3 =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFF 2 1100 9261 3 <CR>

FP4 =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFF ? 8564 <CR>

FP5 =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFF 2 O_SFF_FOAB <CR>

FP6 =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFF ? 3.1415 <CR>

FP7 =0 7FFF_FFFFFFFFFFFFFFFF= 0.FFFFFFFFFFFFFFFF_E-OFF ? -2.74638369E-36. <CR>

133Bug>

92

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

3.33 SET TIME AND DATE SET
SET

The SET command is interactive and begins with the user entering the ASCII
string *SET’ followed by a carriage return. At this time, a prompt asking for
HH:MM:SS is displayed. The user may change the displayed time by typing a new
time followed by <CR>, or may simply enter <CR>, which Teaves the displayed
time unchanged. When the correct time matches the data entered, the user

should press the carriage return to establish the current value in the
time-of-day clock.

Note that an incorrect entry may be corrected by backspacing or deleting the
entire line as long as the carriage return has not been entered.

After the initial prompt and entry, another prompt is presented asking for
MM/DD/YY. The user may change the displayed date by typing a new date

followed by <CR>, or may simply enter <CR>, which leaves the displayed date
unchanged.

To display the current date and time of day, refer to the TIME command.

Example: To SET a date and time of May 11, 1985 2:05:32.7 PM the command
is as follows:

133Bug>SET <CR>

XX/ XX/ XX XXEXN 3 XX o X

Enter time as HH:MM:SS (24 hour clock)
14:05:32 <CR>

Enter date as MM/DD/YY

05/11/85 <CR>
133Bug>

95

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.32 SWITCH DIRECTORIES SD
SD

This command is used to change from the debugger directory to the diagnostic
directory or from the diagnostic directory to the debugger directory.

The commands in the current directory (the directory that the user is in at
the particular time) may be listed using the Help (HE) command.

The way the directories are structured, the debugger commands are available
from either directory but the diagnostic commands are only available from the
diagnostic directory.

Example 1:

133Bug> SD <CR>

133Diag> (The user has changed from the debugger)
(directory to the diagnostic directory,)
(as can be seen by the "133Diag>")
(prompt.)

Example 2:

133Diag> SD <CR>

133Bug> (The user is now back in the debugger)
(directory.)

94

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

133Bug>T_<CR>

PC =00010002 SR =2700=TR:OFF S. 7

USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010002 4282 CLR.Lx:=2D2

133Bug>

Trace next instruction:

133Bug> <CR>

PC =00010004 SR =2704=TR:OFF _S. 7_..Z..

USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010004 D401 ADD.B DI1,D2

133Bug>

Trace the next two instructions:

133Bug>T 2 <CR>

PC =00010006 SR =2700=TR:OFF_S. 7

USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =0008F41C D1 =0008F41C D2 =0000001C D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010006 E289 LSR.L #1,D1

PC =00010008 SR =2700=TR:OFF_S. 7 _.....

USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =0008F41C D1 =00047A0E D2 =0000001C D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010008 66FA BNE.B $10004

133Bug>

97

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.34 TRACE T
T [<COUNT>]

The T command allows execution of one instruction at a time, displaying the
target state after execution. T starts tracing at the address in the target
PC. The optional count field (which defaults to 1 if none entered) specifies
the number of instructions to be traced before returning control to 133Bug.

Breakpoints are monitored (but not inserted) during tracing for all trace
commands, which allows the use of breakpoints in ROM or write-protected
memory. In all cases, if a breakpoint with O count is encountered, control is
returned to 133Bug.

The trace functions are implemented with the trace bits (T0, T1) in the
MC68020 status register, therefore, these bits should not be modified by the
user while using the trace commands.

Example: (The following program resides at location $10000.)
133Bug>MD_10000:DI <CR>

00010000 2200 MOVE.L DO,D1
00010002 4282 CLR:L - D2
00010004 D401 ADD.B D1,D2
00010006 E289 LSR.L #$1,D1
00010008 66FA BNE.B $10004
0001000A E20A LSR.B #$1,D2
0001000C 55C2 SCS D2
0001000E 60FE BRA.B $1000E
133Bug>

Initialize PC and DO:

133Bug>RM PC <CR>
PC =00008000 ? 10000. <CR>
133Bug>RM DO <CR>
DO =00000000 ? 8F41C. <CR>

Display target registers and trace one instruction:

133Bug>RD_<CR>

PC =00010000 SR =2700=TR:OFF S. 7

USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =0008F41C D1 =00000000 D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010000 2200 MOVE.L DO,D1

96

THE 133Bug DEBUGGER COMMAND SET
(:} MOTOROLA

3.36 TRACE ON CHANGE OF CONTROL FLOW TC
TC [<COUNT>]

TC starts execution at the address in the target PC and begins tracing upon
the detection of an instruction that causes a change of control flow, such as
JSR, BSR, RTS, etc. This means that execution is in real-time until a change
of flow instruction is encountered. The optional count field (which defaults
to 1 if none entered) specifies the number of change of flow instructions to
be traced before returning control to 133Bug.

Breakpoints are monitored (but not inserted) during tracing for all trace
commands, which allows the use of breakpoints in ROM or write-protected
memory. Note that the TC command recognizes a breakpoint only if it is at a
change of flow instruction. In all cases, if a breakpoint with 0 count is
encountered, control is returned to 133Bug.

The trace functions are implemented with the trace bits (T0O, T1) in the
MC68020 status register, therefore, these bits should not be modified by the
user while using the trace commands.

Example: (The following program resides at location $10000.)
133Bug>MD _10000;DI <CR>

00010000 2200 MOVE.L DO,D1
00010002 4282 CLR.L D2
00010004 D401 ADD.B D1,D2
00010006 E289 LSR.L #$1,D1
00010008 66FA BNE.B $10004
0001000A E20A LSR.B #$1,D2
0001000C 55C2 SCS D2
0001000E 60FE BRA.B $1000E
133Bug>

Initialize PC and DO:
133Bug>RM PC <CR>

PC =00008000 ? 10000. <CR>
133Bug>RM DO _<CR>

DO =00000000 ? 8F41C. <CR>
Trace on change of flow:

133Bug>TC_<CR>

00010008 66FA BNE.B $10004 (Note that this)
PC =00010004 SR =2700=TR:OFF_S._7_..... (display also)
USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000 (shows the)
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000 (change of flow)
DO =0008F41C D1 =00047A0E D2 =0000001C D3 =00000000 (instruction.)

D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 A1 =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010004 D401 ADD.B D1,D2

133Bug>

99

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.35 TERMINAL ATTACH TA
TA [<port>]

Terminal Attach allows the user to assign any serial port to be the console.

The port specified must already be assigned (refer to the Port Format (PF)
command) .

Example 1: Selecting port 2 (logical unit #02) as console.

133Bug> TA 2 <CR> (No prompt appears unless port 2 was already the
console.)

Example 2: Restoring console to port selected at power-up.

133Bug> TA <CR> (Prompt now appears at terminal connected to port
0.)

98

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

3.38 TRANSPARENT MODE ™
TM [n] [<ESCAPE>]

TM essentially connects the console serial port and the host port together,
allowing the user to communicate with a host computer. A message displayed by
TM shows the current escape character, i.e., the character used to exit the
transparent mode. The two ports remain "connected" until the escape character
is received by the console port. The escape character is not transmitted to
the host and at power up or reset it is initialized to $01="A.

The optional port number "n" allows the user to specify which port is the
"host" port. If omitted, port 1 is assumed.

The ports do not have to be at the same baud rate, but the terminal port baud
rate should be equal to or greater than the host port baud rate for reliable
operation. To change the baud rate use the Port Format (PF) command.

The optional escape argument allows the user to specify the character to be
used as the exit character. This can be entered in three different formats:

ASCII code . $03 Set escape character to ~AC
control character: *C Set escape character to ~C
ASCII character : ’c Set escape character to ¢

If the port number is omitted and the escape argument is entered as a numeric
value, precede the escape argument with a comma to distinguish it from a port
number.

Example 1:

133Bug>TM <CR> Enter TM.
Escape character: $01="A Exit code is always displayed.
<MA> Exit transparent mode.

Example 2:

133Bug>TM__“g <CR> Enter TM and set escape character
Escape character: $07="G to %G

<AG> Exit transparent mode.

133Bug>

101

THE 133Bug DEBUGGER COMMAND SET
@ MOTOROLA

3.37 DISPLAY TIME AND DATE
TIME

TIME

This command presents the date and time in ASCII characters to the console.

To initialize the time-of-day clock, refer to the SET command.

Example: A data and time of May 11, 1985 2:05:32.7 would be displayed
as:

133Bug>TIME <CR>

05/11/85 14:05:32.7
133Bug>

100

(::) MOTOROLA

PC =00010004
USP =0000382C
SFC =0=XX

DO =0008F41C
D4 =00000000
A0 =00000000
A4 =00000000
00010004 D401
At Breakpoint
PC =00010006
USP =0000382C
SFC =0=XX

DO =0008F41C
D4 =00000000
A0 =00000000
A4 =00000000
00010006 E289
133Bug>

SR
MSP
DFC
D1
D5
Al
A5

SR
MSP
DFC
D1
D5
Al
A5

=2704=TR:0FF S. 7_..Z..
=00003C14 1SP*=00004000
=0=XX CACR=0-..

=0008F41C D2 =00000000
00000000 D6 =00000000
=00000000 A2 =00000000
=00000000 A6 =00000000

ADD.B D1,D2

=2700=TR:0FF S. 7_.....
=00003C14 ISP*=00004000
=0=XX CACR=0-..

-0008F41C D2 =0000001C
=00000000 D6 =00000000
=00000000 A2 =00000000
=00000000 A6 =00000000

LSR.L #1,D1

103

THE 133Bug DEBUGGER COMMAND SET

VBR =00000000
CAAR=00000000
D3 =00000000
D7 =00000000
A3 =00000000
A7 =00004000

VBR =00000000
CAAR=00000000
D3 =00000000
D7 =00000000
A3 =00000000
A7 =00004000

1T

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.39 TRACE TO TEMPORARY BREAKPOINT 17
TT <ADDR>

TT sets a temporary breakpoint at the specified address and traces until a
breakpoint with 0 count is encountered. The temporary breakpoint is then
removed (TT is analogous to the GT command) and control is returned to 133Bug.
Tracing starts at the target PC address.

Breakpoints are monitored (but not inserted) during tracing for all trace
commands, which allows the use of breakpoints in ROM or write-protected

memory. If a breakpoint with 0 count is encountered, control is returned to
133Bug.

The trace functions are implemented with the trace bits (T0, T1) in the
MC68020 status register; therefore, these bits should not be modified by the
user while using the trace commands.

Example: (The following program resides at location $10000.)

133Bug>MD_10000;DI <CR>

00010000 2200 MOVE.L DO,D1
00010002 4282 CLR.L D2
00010004 D401 ADD.B D1,D2
00010006 E289 LSR.L #$1,D1
00010008 66FA BNE.B $10004
0001000A E20A LSR.B #%$1,D2
0001000C 55C2 SCS D2
0001000E 60FE BRA.B $1000E
133Bug>

Initialize PC and DO:

133Bug>RM_PC <CR>
PC =00008000 ? 10000. <CR>
133Bug>RM DO _<CR>
DO =00000000 ? 8F41C. <CR>

Trace to temporary breakpoint:

133Bug>TT_10006 <CR>

PC =00010002 SR =2700=TR:OFF_S. 7_.....

USP =0000382C MSP =00003C14 ISP*=00004000 VBR =00000000
SFC =0=XX DFC =0=XX CACR=0=.. CAAR=00000000
DO =0008F41C D1 =0008F41C D2 =00000000 D3 =00000000
D4 =00000000 D5 =00000000 D6 =00000000 D7 =00000000
A0 =00000000 Al =00000000 A2 =00000000 A3 =00000000
A4 =00000000 A5 =00000000 A6 =00000000 A7 =00004000
00010002 4282 CLR.L D2

102

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

VE

X option - Echo. Echoes the S-records to the user’s terminal as they are
read in at the host port.

During a verify operation, data from an S-record is compared to memory
beginning with the address contained in the S-record address field (plus the
offset address, if it was specified). If the verification fails, then the
non-comparing record is set aside until the verify is complete and then it is
printed out to the screen. If three non-comparing records are encountered in
the course of a verify operation, then the command is aborted.

If a non-hex character is encountered within the data field of a data record,
then the part of the record which had been received up to that time is printed
to the screen and the 133Bug error handler is invoked to point to the faulty
character.

As mentioned, if the embedded checksum of a record does not agree with the
checksum calculated by 133Bug AND if the checksum comparison has not been
disabled via the "-C" option, then an error condition exists. A message is
output stating the address of the record (as obtained from the address field
of the record), the calculated checksum, and the checksum read with the
record. A copy of the record is also output. This is a fatal error and
causes the command to abort.

Examples:

This short program was developed on a host system.

1 * Test Program.

2 * -

3 65040000 ORG $65040000
4

5 65040000 7001 MOVEQ.L #1,D0

6 65040002 D088 ADD.L A0,DO

7 65040004 4A00 TST.B DO

8 65040006 4E75 RTS

9 END

*kkxxk TOTAL ERRORS 0--

*kkkk% TOTAL WARNINGS 0--

Then the program was converted into an S-record file named TEST.MX that looks
like this:

SO00F00005445535453335337202001015E

S30D650400007001D0884A004E75B3
$7056504000091

105

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

3.40 VERIFY S-RECORDS AGAINST MEMORY VE
VE [n] [<ADDR>] [;<X/-C>] [=<text>]

This command is identical to the LO command with the exception that data is
not stored to memory but merely compared to the contents of memory.

The VE command accepts serial data from a host system in the form of a file of
Motorola S-records and compares it to data already in the MVME133 memory. If
the data does not compare, then the user is alerted via information sent to
the terminal screen.

The optional port number "n" allows the user to specify which port is to be
used for the downloading. If this number is omitted, port 1 is assumed.

The optional <ADDR> field allows the user to enter an offset address which is
to be added to the address contained in the address field of each record.
This causes the records to be compared to memory at different locations than
would normally occur. The contents of the automatic offset register are not
added to the S-record addresses. (Appendix C has information on S-records.)
If the address is in the range $0 to $1F and the port number is omitted,
precede the address with a comma to distinguish it from a port number.

The optional text field, entered after the equals sign (=), is sent to the
host before 133Bug begins to look for S-records at the host port. This allows
the user to send a command to the host device to initiate the download. This
text should NOT be delimited by any kind of quote marks. Text is understood
to begin immediately following the equals sign and terminate with the carriage
return. If the host is operating full duplex, the string is also echoed back
to the host port by the host and appears on the user’s terminal screen.

In order to accommodate host systems that echo all received characters, the
above-mentioned text string is sent to the host one character at a time and
characters received from the host are read one at a time. After the entire
command has been sent to the host, VE keeps looking for an LF character from
the host, signifying the end of the echoed command. No data records are
processed until this LF is received. If the host system does not echo
characters, VE still keeps looking for an LF character before data records are
processed. For this reason, it is required in situations where the host
system does not echo characters, that the first record transferred by the host
system be a header record. The header record is not used, but the LF after
the header record serves to break VE out of the loop so that data records are
processed.

The other options have the following effects:

-C option - Ignore checksum. A checksum for the data contained within an
S-Record 1is calculated as the S-record is read in at the port. Normally,
this calculated checksum is compared to the checksum contained within the
S-Record and if the compare fails an error message is sent to the screen
on completion of the download. If this option is selected, then the
comparison is not made.

104

- DISASSEMBLER
@ MOTOROLA USING ONE-LINE ASSEMBLER/DISAS E

CHAPTER 4
USING THE ONE-LINE ASSEMBLER/DISASSEMBLER

4.1 TINTRODUCTION

Included as part of the 133Bug firmware is an assembler/disassembler function.
The assembler is an interactive assembler/editor in which the source program
is not saved. Each source line is translated into the proper MC68020/MC68881
machine language code and is stored in memory on a line-by-line basis at the
time of entry. In order to display an instruction, the machine code is
disassembled, and the instruction mnemonic and operands are displayed. All
valid MC68020 instructions are translated.

The 133Bug assembler is effectively a subset of the MC68020 Resident
Structured Assembler. It has some limitations as compared with the Resident
Assembler, such as not allowing 1line numbers and labels; however, it is a
powerful tool for creating, modifying, and debugging MC68020 code.

4.1.1 M68020 Assembly Language

The symbolic language used to code source programs for processing by the
assembler is MC68020 assembly language. This language is a collection of
mnemonics representing:

. Operations

- MC68020 machine-instruction operation codes
- Directives (pseudo-ops)

. Operators

. Special symbols

4.1.1.1 Machine-Instruction Operation Codes. That part of the assembly
language that provides the mnemonic machine-instruction operation codes for
the MC68020/MC68881 machine instructions is described in the MC68020 and
MC68881 User’s Manuals, MC68020UM and MC68881UM. Refer to these manuals for
any question concerning operation codes.

4.1.1.2 Directives. Normally, assembly Tlanguage can contain mnemonic
directives which specify auxiliary actions to be performed by the assembler.

The 133Bug assembler recognizes only two directives called define constant
(DC.W) and SYSCALL. These two directives are used to define data within the
program and to make calls to 133Bug utilities. Refer to paragraphs 4.2.3 and
4.2.4, respectively.

107

@ MOTOROLA THE 133Bug DEBUGGER COMMAND SET

VE

This file was downloaded into memory at address $40000. The program may be
examined in memory using the Memory Display (MD) command.

133Bug>MD_40000:4;DI <CR>

00040000 7001 MOVEQ.L #1,DO0
00040002 D088 ADD.L A0,DO
00040004 4A00 TST.B DO
00040006 4E75 RTS

133Bug>

Suppose that the user wants to make sure that the program has not been
destroyed in memory. The VE command is used to perform a verification.

133Bug>VE -65000000;X=COPY TEST.MX,# <CR>
SO00F00005445535453335337202001015E
$30D650400007001D0884A004E7583
$7056504000091

Verify passes.

133Bug>

The verification passes. The program stored in memory was the same as that in
the S-record file that had been downloaded.

Now change the program in memory and perform the verification again.

133Bug>M_40002 <CR>
00040002 D088? D08Y9. <CR>

133Bug>VE -65000000;X=COPY TEST.MX,# <CR>
S00F00005445535453335337202001015E
S30D650400007001D0884A004E75B3

$7056504000091

The following record(s) did not verify
$30D65040000------ 88-------- B3

133Bug>

The byte which was changed in memory does not compare with the corresponding
byte in the S-record.

106

.

USING ONE-LINE ASSEMBLER/DISASSEMBLER
@ MOTOROLA

4.2.1.1 Operation Field. Because there is no label field, the operation
field may begin in the first available column. It may also follow one or more
spaces. Entries can consist of one of three categories:

a. Operation codes which correspond to the MC68020/MC68881 instruction
set.

b. Define Constant directive -- DC.W is recognized to define a constant
in a word location.

c. System Call directive -- SYSCALL is used to call 133Bug system
utilities.

The size of the data field affected by an instruction is determined by the
data size codes. Some instructions and directives can operate on more than
one data size. For these operations, the data size code must be specified or
a default size applicable to that instruction will be assumed. The size code
need not be specified if only one data size is permitted by the operation. The
data size code is specified by a period (.), appended to the operation field,
and followed by B, W, or L, where:

B = Byte (8-bit data).
W = Word (the usual default size; 16-bit data).
L = Longword (32-bit data).

The data size code 1is not permitted, however, when the instruction or
directive does not have a data size attribute.

Examples (legal):

LEA 2(A0),Al Longword size is assumed (.B, .W not allowed); this
instruction loads effective address of the first operand
into Al.

ADD.B (A0),DO This instruction adds the byte whose address is (A0) to the
lowest order byte in DO.

ADD D1,D2 This instruction adds the low order word of D1 to the low
order word of D2. (W is the default size code.)

ADD.L A3,D3 This instruction adds the entire 32-bit (longword) contents
of A3 to D3.

Example (illegal):
SUBA.B #5,A1 [11egal size specification (.B not allowed on SUBA). This
instruction would have subtracted the value 5 from the Tow

order byte of Al; byte operations on address registers are
not allowed.

109

USING ONE-LINE ASSEMBLER/DISASSEMBLER
(M) moTOoROLA

4.1.2 Comparison with MC68020 Resident Structured Assembler

There are several major differences between the 133Bug assembler and the
MC68020 Resident Structured Assembler. The resident assembler is a two-pass
assembler that processes an entire program as a unit, while the 133Bug
assembler processes each line of a program as an individual unit. Due mainly
to this basic functional difference, the capabilities of the 133Bug assembler
are more restricted:

a. Label and line numbers are not used. Labels are used to reference other
lines and locations in a program. The one-line assembler has no
knowledge of other Tlines and, therefore, cannot make the required
association between a label and the label definition Tlocated on a
separate line.

b. Source lines are not saved. In order to read back a program after it has
been entered, the machine code is disassembled and then displayed as
mnemonic and operands.

c. Only two directives (DC.W and SYSCALL) are accepted.
d. No macro operation capability is included.
e. No conditional assembly is used.

f. Several symbols recognized by the resident assembler are not included in
the 133Bug assembler character set. These symbols include > and <.
Three other symbols have multiple meaning to the resident assembler,
depending on the context (refer to paragraph 4.2.2). These are:

Asterisk (*) -- Multiply or current PC.
Slash (/) -- Divide or delimiter in a register list.
Ampersand (&) -- AND or decimal number.

Although functional differences exist between the two assemblers, the one-line
assembler 1is a true subset of the resident assembler. The format and syntax
used with the 133Bug assembler are acceptable to the resident assembler except
as described above.

4.2 SOURCE PROGRAM CODING

A source program is a sequence of source statements arranged in a logical way
to perform a . predetermined task. Each source statement occupies a line and

must be either an executable instruction, a DC.W directive, or a SYSCALL
issemb1er directive. FEach source statement follows a consistent source Tine
ormat.

4.2.1 Source Line Format

Each source statement is a combination of operation and, as required, operand
fields. Line numbers, labels, and comments are not used.

108

- SSEMBLER
@ MOTOROLA USING ONE-LINE ASSEMBLER/DISASSEMBLE

b. Hexadecimal - is a string of hexadecimal digits (0-9, A-F) preceded by
an optional dollar sign ($). An example is:

$AFES

One or more ASCII characters enclosed by apostrophes (’) constitute an ASCII
string. ASCII strings are right-justified and zero-filled (if necessary),
whether stored or used as immediate operands.

005000 0053 DC.W ’§!
005002 223C41424344 MOVE.L #’ABCD’,D1
005008 3536 DC.W *567

The following register mnemonics are recognized/referenced by the assembler
/disassembler:

Pseudo Registers

PC Program Counter. Used only in forcing program counter-relative
addressing.

SR Status Register.

CCR Condition Codes Register (Lower eight bits of SR).

uUspP User Stack Pointer.

MSP Master Stack Pointer.

ISP Interrupt Stack Pointer.

VBR Vector Base Register.

SFC Source Function Code Register.

DFC " Destination Function Code Register.

CACR Cache Control Register.

CAAR Cache Address Register.

DO-D7 Data registers.

AO0-A7 Address Registers. Address register A7 represents the active

system stack pointer, that is, one of USP, MSP, or 1SP, as
specified by the M and S bits of the status register (SR).

FPCR Control Register
FPSR Status Register
FPIAR Instruction Address Register
FPO-7 Floating Point Data Registers

43

USING ONE-LINE ASSEMBLER/DISASSEMBLER
@ MOTOROLA

4.2.1.2 Operand Field. If present, the operand field follows the operation
field and is separated from the operation field by at least one space. When
two or more operand subfields appear within a statement, they must be
separated by a comma. In an instruction T1ike > ADD D1,D2’, the first subfield
(D1) is called the source effective address field, and the second subfield
(D2) is called the destination <EA> field. Thus, the contents of D1 are added
to the contents of D2 and the result is saved in register D2. In the
instruction * MOVE D1,D2’, the first subfield (D1) is the sending field and
the second subfield (D2) is the receiving field. In other words, for most
two-operand instructions, the general format ’ <opcode><source>,<destination>’
applies.

4.2.1.3 Disassembled Source Line. The disassembled source line may not look
identical to the source line entered. The disassembler makes a decision on
how it interprets the numbers used. If the number is an offset off of an
address register, it is treated as a signed hexadecimal offset. Otherwise, it
is treated as a straight unsigned hexadecimal. For example,

MOVE.L #1234,5678
MOVE.L FFFFFFFC(A0),5678

disassembles to

00003000 21FC0000 12345678 MOVE.L #$1234,($5678).W
00003008 21E8FFFC 5678 MOVE.L -$4(A0),($5678).W

Also, for some instructions, there are two valid mnemonics for the same
opcode, or there is more than one assembly language equivalent. The

disassembler may choose a form different from the one originally entered. As
examples:

a. BRA is returned for BT
b. DBF is returned for DBRA

NOTE

The assembler recognizes two forms of mnemonics for two branch
instructions. The BT form (branch conditionally true) has the
same opcode as the BRA instruction. Also, DBRA (decrement and
branch always) and DBF (never true, decrement, and branch)
mnemonics are different forms for the same instruction. In each
case, the assembler will accept both forms.

4.2.1.4 Mnemonics and Delimiters. The assembler recognizes all MC68020
instruction mnemonics. Numbers are recognized as binary, octal, decimal, and
hexadecimal, with hexadecimal the default case.

a. Decimal - is a string of decimal digits (0-9) preceded by an ampersand
(&). Examples are:
412334
-8987654321

110

P o

@ MOTOROLA

USING ONE-LINE ASSEMBLER/DISASSEMBLER

133Bug Assembler Addressing Modes (cont’d)

register indirect with index, base displacement.
register memory indirect postindexed.

register memory indirect pre-indexed.

Counter indirect with displacement.

Counter indirect with index, 8-bit displacement.
Counter indirect with index, base displacement.
Counter memory indirect postindexed.

Counter memory indirect pre-indexed.

Absolute word address.
Absolute long address.

TABLE 4-1.
FORMAT

(bd,An,Xi) Address
([bd,An],Xi,od) Address
([bd,An,Xi],0d) Address
(d16,PC) Program
(d8,PC,Xi) Program
(bd,PC,Xi) Program
([bd,PC],Xi,od) Program
([bd,PC,Xi],0d) Program
(xxxx) .W

{xxacx) oL

#XXXX

Immediate data.

Whenever a number goes in the above addressing modes, the user may specify an
t the assembler figure out what the number is. At present

expression and Te
the allowed operand

Octal numbers

Hexadecimal n

«Q -Ho QO T

S are:

Binary numbers

Decimal numbers

umbers

String literals
Offset registers
Program counter

(%18)
(€765..0)
(4987..0)
($FED. .0)
(’CHAR’)
(RO-R7)

(*)

and the allowed operators are:

Addition
Subtraction
Multiply
Divide
Shift left
Shift right
Bitwise OR
Bitwise AND

DSKQ —HhO® QOO T

0=V AN % 1 +
Vv A

The order of evaluation is strictly left to right with no precedence granted
over others. The only exception to this is when the user
forces the order of precedence through the use of parentheses.

to some operators

113

2 ISASSEMBLER
@ MOTOROLA USING ONE-LINE ASSEMBLER/D

4.2.1.5 Character Set. The character set recognized by the 133Bug assembler
is a subset of ASCII, and these are listed as follows:

a. The letters A through Z (uppercase and lowercase)
b. The integers 0 through 9

c. Arithmetic operators: + - * / << >> | &

d. Parentheses ()

e. Characters used as special prefixes:

(pound sign) specifies the immediate form of addressing.
$ (dollar sign) specifies a hexadecimal number.

& (ampersand) specifies a decimal number.

@ (commercial at sign) specifies an octal number.

% (percent sign) specifies a binary number.

* (apostrophe) specifies an ASCII Titeral character string.

f. Five separating characters:

Space

, (comma)
. (period)
/ (slash)
- (dash)

g. The character * (asterisk) indicates current location.

4.2.2 Addressing Modes

Effective address modes, combined with operation codes, define the particular
function to be performed by a given instruction. Effective addressing and
data organization are described in detail in Section 2, "Data Organization and
Addressing Capabilities", of the MC68020 User’s Manual.

Table 4-1 summarizes the addressing modes of the MC68020 which are accepted by
the 133Bug one-line assembler.

TABLE 4-1. 133Bug Assembler Addressing Modes

FORMAT DESCRIPTION
Dn Data register direct.
An Address register direct.
(An) Address register indirect.
(An)+ Address register indirect with postincrement.
- (An) Address register indirect with predecrement.
d(An) Address register indirect with displacement.
d(An,Xi) Address register indirect with index, 8-bit displacement.

112

USING ONE-LINE ASSEMBLER/DISASSEMBLER
(::) MOTOROLA

b. The user may skip a field by "stepping past" it with a comma. Example:

CLR (D7) is equivalent to
CLR ($D7,ZA0,ZD0.W*1)

but
CLR (,,D7) is equivalent to
CLR (0.N,ZA0,D7.W*1)

c. If the user does not specify the base register, the default ’ZA0’ is
forced.

d. If the wuser does not specify the index register, the default ’ZD0.W*1’
is forced.

e. Any unspecified displacements are defaulted to ’0.N’.

The rules for parsing the memory indirect addressing modes are the same as
above with the following additions.

a. The subfield that begins with [’ must be terminated with a matching
’]7.

b. If the text given is insufficient to distinguish between the pre-indexed
or postindexed addressing modes, the default is the pre-indexed form.

4.2.3 DC.W Define Constant Directive
The format for the DC.W directive is: DC.W <operand>

The function of this directive is to define a constant in memory. The DC.W
directive can have only one operand (16-bit value) which can contain the
actual value (decimal, hexadecimal, or ASCII). Alternatively, the operand can
be an expression which can be assigned a numeric value by the assembler. The
constant is aligned on a word boundary as word (.W) size is specified. An
ASCII string 1is recognized when characters are enclosed inside single quotes
(> ’). Each character (seven bits) is assigned to a byte of memory, with the
eighth bit (MSB) always equal to zero. If only one byte is entered, the byte

is right justified. A maximum of two ASCII characters may be entered for each
DC.W directive. Examples are:

00010022 04D2 DC.W &1234 Decimal number

00010024 AAFE DC.W AAFE Hexadecimal number

00010026 4142 DC.W ’AB’ ASCII string

00010028 5443 DC.W ’TB’+1 Expression

0001002A 0043 DC.W %G ASCII character is right justified

115

M) moToROLA

Possible poin

a. The us
could

way. F

CLR

CLR

CLR

CLR

CLR

b. With t
does th

For par
<0PE
with a

Given
definit

£ WM -

When specifyi
addressing mo

Address
Address
Address
Program
Program
Program

-H0® Q0O T

For modes
displacement,

a. The u
?)? .Exal

CLR
CLR

CLR

USING ONE-LINE ASSEMBLER/DISASSEMBLER

ts of confusion:

er should keep in mind that where a number is intended and it
be confused with a register, it must be differentiated in some
or example:

DO means CLR.W register DO. On the other hand,
$DO

0DO

+D0

DO+0 all mean CLR.W memory location $DO.

he use of ’*’ to represent both multiply and program counter, how
e assembler know when to use which definition?

sing algebraic expressions, the order of parsing is
RAND><OPERATOR><OPERAND><OPERATOR>. . .
possible left or right parenthesis.

the above order, the assembler can distinguish by placement which

ion to use. For example:

ek means PC x PC

Fqpk means PC + PC

e means 2 * PC

*3&16 means PC AND &16

ng operands, the user may skip or omit entries with the following
des.

register indirect with index, base displacement.
register memory indirect postindexed.
register memory indirect pre-indexed.
counter indirect with index, base displacement.
counter memory indirect postindexed.
counter memory indirect pre-indexed.

Address register/Program counter indirect with index, base
the rules for omission/skipping are as follows:

ser may terminate the operand at any time by specifying
mple:
or
{5s) is equivalent to
(0.N,ZA0,ZD0.W*1)

114

USING ONE-LINE ASSEMBLER/DISASSEMBLER
@ MOTOROLA

The disassembled Tline can be an MC68020 instruction, a SYSCALL, or a DC.W
directive. If the disassembler recognizes a valid form of some instruction,
the instruction will be returned; if not (random data occurs), the DC.W $XXXX
(always hex) 1is returned. Because the disassembler gives precedence to
instructions, a word of data that corresponds to a valid instruction will be
returned as the instruction.

4.3.2 Ehtering a Source Line

A new source line is entered immediately following the disassembled line,
using the format discussed in paragraph 4.2.1:

133Bug>MM 10000;DI <CR>
00010000 2600 MOVE.L DO,D3 ? ADDQ.L #1,A3 <CR>

When the carriage return is entered terminating the line, the old source line
is erased from the terminal screen, the new line is assembled and displayed,
and the next instruction in memory is disassembled and displayed:

133Bug>MM_10000;DI <CR>
00010000 528B ADDQ.L #1,A3
00010002 4282 CLR.L p2--2

If a hardcopy terminal is being used, port 0 should be reconfigured for
hardcopy mode for proper operation (refer to Port Format (PF) command). In
this case, the above example will look as follows:

133Bug>MM _10000:;DI <CR>

00010000 2600 MOVE.L DO,D3 ? ADDQ.L #1,A3 <CR>
00010000 528B ADDQ.L #1,A3
00010002 4282 CLR.L D2 ?

Another program line can now be entered. Program entry continues in like
manner until all Tlines have been entered. A period is used to exit the MM
command.

If an error is encountered during assembly of the new line, the assembler will
display the line unassembled with an "A" under the field suspected of causing
the error and an error message will be displayed. The Tocation being accessed
is redisplayed:

133Bug>m_10000:di <CR>

00010000 528B ADDQ.L #1,A3 ? lea.l 5(a0,d8).a4 <CR>

00010000 LEA.L 5(A0,D8),A4
A

*%% Unknown Field ***
00010000 528B ADDQ.L #1,A3 ?

117

NE- I MBLE
@ MOTOROLA USING ONE-LINE ASSEMBLER/DISASSE R

4.2.4 SYSCALL System Call Directive

The function of this directive is to aid the user in making the TRAP #15 calls
to system functions. The format for this directive is:

SYSCALL <function name>
For example, the following two pieces of code produce identical results.

TRAP #$F
DC.W O
or
SYSCALL .INCHR

Refer to Chapter 5 (SYSTEM CALLS) for a complete listing of all the functions
provided.

4.3 ENTERING AND MODIFYING SOURCE PROGRAMS

User programs are entered into the memory using the one-line assembler/
disassembler. The program is entered in assembly language statements on a
line-by-line basis. The source code is not saved as it is converted
immediately to machine code upon entry. This imposes several restrictions on
the type of source Tine that can be entered.

Symbols and labels, other than the defined instruction mnemonics, are not
allowed. The assembler has no means to store the associated values of the
symbols and labels in lookup tables. This forces the programmer to use memory
addresses and to enter data directly rather than use labels.

Also, editing 1is accomplished by retyping the entire new source Tine. Lines
can be added or deleted by moving a block of memory data to free up or delete
the appropriate number of locations (refer to Block Move (BM) command).

4.3.1 Invoking the Assembler/Disassembler

The assembler/disassembler is invoked using the ;DI option of the Memory
Modify (MM) and Memory Display (MD) commands:

MM <ADDR> ;DI

LCR> exits command

where <CR> sequences to next instruction

A

and
MD[S] <ADDR>[:<count> | <ADDR>];DI

The MM (;DI option) is used for program entry and modification. When this

command is wused, the memory contents at the specified Tlocation are
disassembled and displayed. A new or modified line can be entered if desired.

116

SYSTEM CALLS
@ MOTOROLA

CHAPTER 5
SYSTEM CALLS

5.1 INTRODUCTION

This chapter describes the 133Bug TRAP #15 handler, which allows system calls
from user programs. The system calls can be used to access selected
functional routines contained within 133Bug, including input and output
routines. TRAP #15 may also be used to transfer control to 133Bug at the end
of a user program (refer to the .RETURN function, paragraph 5.2.19).

In the descriptions of some input and output functions, reference is made to
the "default input port" or the "default output port". After power-up or
reset, the default input and output port is initialized to be port 0 (the
MVME133 debug port). The defaults may be changed, however, using the .REDIR I
and .REDIR O functions, as described in paragraph 5.2.18.

5.1.1 Invoking System Calls Through TRAP #15

To invoke a system call from a user program, simply insert a TRAP #15
instruction into the source program. The code corresponding to the particular
system routine is specified in the word following the TRAP opcode, as shown in

the following example.
Format in user program:

TRAP #15 System call to 133Bug
DC.W $xxxx Routine being requested (xxxx = code)

In some of the examples shown in the following descriptions, a SYSCALL macro
is used. This macro simply does the TRAP #15 call followed by the Define
Constant for the function code. For clarity, the SYSCALL macro is as follows:

SYSCALL MACRO

TRAP #15
DC.W \1
ENDM

Using the SYSCALL macro, the system call would appear in the user program as
follows:

SYSCALL <routine name>

It is, of course, necessary to create an equate file with the routine names
equated to their respective codes.

When wusing the 133Bug one-line assembler/disassembler, the SYSCALL macro and
the equates are predefined. Simply write in "SYSCALL" followed by a space and
the function, then carriage return.

119

= MBLER/DISASSEMBLER
@ MOTOROLA USING ONE-LINE ASSEMBLER/

4.3.3 Entering Branch and Jump Addresses

When entering a source line containing a branch instruction (BRA, BGT, BEQ,
etc.), do not enter the offset to the branch destination in the operand field
of the instruction. The offset is calculated by the assembler. The user must
append the appropriate size extension to the branch instruction.

To reference a current location in an operand expression, the character "*"
(asterisk) can be used. Examples are:

00030000 60004094 BRA *+$4096
00030000 60FE BRA.B *
00030000 4EF90003 0000 JMP *
00030000 4EF00130 00030000 JMP (*,A0,D0)

In the case of forward branches or Jjumps, the absolute address of the
destination may not be known as the program is being entered. The user may
temporarily enter an "*" for branch to self in order to reserve space. After
the actual address is discovered, the Tine containing the branch instruction
can be re-entered using the correct value.

4.3.4 Assembler Output/Program Listings

A listing of the program is obtained using the MD command with the ;DI option.
The MD command requires both the starting address and the 1line count to be
entered in the command Tine. When the ;DI option is invoked, the number of
instructions disassembled and displayed is equal to the Tine count.

To obtain a hard copy listing of a program, use the PA command to activate the
Port 1 printer. An MD to the terminal then causes a Tisting on the terminal
and on the printer.

Note again, that the 1listing may not correspond exactly to the program as
entered. As discussed in paragraph 4.2.1.3, the disassembler displays in
signed hexadecimal any number it interprets as an offset off of an address
register; all other numbers are displayed in unsigned hexadecimal.

118

@ MOTOROLA SYSTEM CALLS

TABLE 5-1. 133Bug System Call Routines (cont’d)

CODE FUNCTION DESCRIPTION

$0040 .TM_INI Time initialization

$0041 .DT_INI Date initialization

$0042 .TM DISP Display time from RTC

$0043 .TM_RD Read the RTC registers

$0060 .REDIR Redirect I/0 of a TRAP #15 function
$0061 .REDIR I Redirect input

$0062 .REDIR O Redirect output

$0063 .RETURN Return to 133Bug

$0064 .BINDEC Convert binary to Binary Coded Decimal (BCD)
$006B .CHK_SUM Generate checksum

121

@ MOTOROLA SYSTEM CALLS

Example:

133Bug>M _3000;DI <CR>

0000 3000 00000000 ORI.B #$0,D0? SYSCALL .OUTLN <CR>
0000 3000 4E4F0022 SYSCALL .OUTLN

0000 3004 00000000 ORI.B #$0,D0? . <CR>

133Bug>

5.1.2 String Formats for 1/0
Within the context of the TRAP #15 handler there are two formats for strings:

Pointer/Pointer Format - The string is defined by a pointer to the first
character and a pointer to the last character + 1.

Pointer/Count Format - The string is defined by a pointer to a count byte,
which contains the count of characters in the string,
followed by the string itself.

A Tine is defined as a string followed by a <CR><LF>.

5.2 SYSTEM CALL ROUTINES

Table 5-1 summarizes the TRAP #15 functions. Refer to the writeups on the
utilities for specific use information.

TABLE 5-1. 133Bug System Call Routines

CODE FUNCTION DESCRIPTION

$0000 . INCHR Input character

$0001 . INSTAT Input serial port status

$0002 .INLN Input line (pointer/pointer format)
$0003 .READSTR Input string (pointer/count format)
$0004 .READLN Input Tine (pointer/count format)
$0010 .DSKRD Disk read

$0011 .DSKWR Disk write

$0020 .OUTCHR Output character

$0021 .OUTSTR Output string (pointer/pointer format)
$0022 .OUTLN Output Tine (pointer/pointer format)
$0023 .WRITE Output string (pointer/count format)
$0024 .WRITELN Output Tine (pointer/count format)
$0025 .WRITDLN Output 1ine with data (pointer/count format)
$0026 .PCRLF Qutput carriage return and line feed

$0027 .ERASLN Erase line

$0028 .WRITD Output string with data (pointer/count format)

120

SYSTEM CALLS
@ MOTOROLA

5.2.2 .INSTAT FUNCTION . INSTAT

TRAP FUNCTION: .INSTAT - Input serial port status
CODE: $0001

DESCRIPTION: INSTAT is used to see if there are characters in the default
input port buffer. The condition codes are set to indicate the
result of the operation.

ENTRY CONDITIONS:

No arguments or stack allocation required

EXIT CONDITIONS DIFFERENT FROM ENTRY:

Z(ero) = 1 if the receiver buffer is empty

EXAMPLE: LOOP SYSCALL . INSTAT Any characters?
BEQ.S EMPTY No, branch
SUBQ.L #2,A7 Yes, then
SYSCALL .INCHR Read them
MOVE.B (SP)+,(A0)+ In buffer
BRA.S LOOP Check for more
EMPTY

123

SYSTEM CALLS
@ MOTOROLA

5.2.1 .INCHR FUNCTION . INCHR
TRAP FUNCTION: .INCHR - Input character routine
CODE: $0000

DESCRIPTION: Reads a character from the default input port. The character is
returned in the stack.

ENTRY CONDITIONS:

SP ==> Space for character <byte>
Word fill <byte>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Character <byte>
Word fill <byte>

EXAMPLE: SuBQ.L #2,SP Allocate space for result.
SYSCALL .INCHR Call INCHR.
MOVE.B (SP)+,DO Load character in DO.

122

SYSTEM CALLS
@ MOTOROLA

5.2.4 .READSTR FUNCTION .READSTR
TRAP FUNCTION: .READSTR - Read string into variable-length buffer
CODE: $0003

DESCRIPTION: READSTR is used to read a string of characters from the default
input port into a buffer. On entry, the first byte in the
buffer indicates the maximum number of characters that can be
placed in the buffer. The buffer size should at least be equal
to that number+2. The maximum number of characters that can be
placed in a buffer is 254 characters. On exit, the count byte
indicates the number of characters in the buffer. Input
terminates when a <CR> is received. The <CR> character appears
in the buffer, although it is not included in the string count.
A1l printable characters are echoed to the default output port.
The <CR> is not echoed. Some control character processing is

done:

G Bell Echoed.

AX Cancel line Line is erased.

&dy Backspace Last character is erased.
 Same as backspace Last character is erased.
<LF> Line Feed Echoed.

<CR> Carriage Return Terminates input.

A1l other control characters are ignored.
ENTRY CONDITIONS:
SP ==> Address of input buffer <long>
EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
The count byte contains the number of bytes in the buffer.

EXAMPLE: If AO contains the string buffer address;

MOVE.B #75, (A0) Set maximum string size.

PEA (AO) Push buffer address.

TRAP #15 (May also invoke by SYSCALL
DC.W 3 macro ("SYSCALL .READSTR").
MOVE.B (A0),DO Read actual string size.

NOTES: This routine allows the caller to dictate the maximum length of input
to be less than 254 characters. If more characters are entered, then
the buffer input is truncated. Control character processing as

described in paragraph 1.6, Terminal Input/Output Control, is in
effect.

125

SYSTEM CALLS
@ MOTOROLA

5.2.3 .INLN FUNCTION .INLN
TRAP FUNCTION: .INLN - Input Tine routine
CODE: $0002

DESCRIPTION: Used to read a line from the default input port. The buffer
size should be at least 256 bytes.

ENTRY CONDITIONS:
SP ==> Address of string buffer <long>
EXIT CONDITIONS DIFFERENT FROM ENTRY:
SP ==> Address of Tast character in the string+l <long>

EXAMPLE: If AO contains the address where the string is to go;

SUBQ.L #4,A7 Allocate space for result.

PEA (A0) Push pointer to destination.

TRAP #15 (May also invoke by SYSCALL

DC.W 2 macro ("SYSCALL .INLN").)

MOVE.L (A7)+,Al Retrieve address of last character+l.

NOTES: A 1line 1is a string of characters terminated by <CR>. The maximum
allowed size is 254 characters. The terminating <CR> is not
considered part of the string, but it is returned in the buffer, that
is, returned pointer points to it. Control character processing as

described in paragraph 1.6, Terminal Input/Output Control, is in
effect.

124

M) moToROLA

5.2.6 .DSKRD,

SYSTEM CALLS

.DSKWR FUNCTIONS .DSKRD
.DSKWR

TRAP FUNCTIONS: .DSKRD - Disk read function

CODES: $0010
$0011

DESCRIPTION:

.DSKWR - Disk write function

These functions are used to read and write one or more sectors
from/to a disk drive. Information about the data transfer is
passed in a command packet which has been built somewhere in
memory. (The wuser program must first manually prepare the
packet.) The address of the packet is passed as an argument to
the function. The same command packet format is used for .DSKRD
and .DSKWR. It is eight words in length, arranged as follows:

Memory Address Most-Significant Word

Memory Address Least-Significant Word

Block Number Most-Significant Word

Block Number Least-Significant Word

Field descriptions:

Controller LUN - Logical Unit Number (LUN) of controller to use.

Device LUN

Status Word

- Logical Unit Number of device to use.

- This status word reflects the result of the operation. It
is zero if the command completed without errors. Refer to
Appendix F for meanings of returned error codes.

Memory Address - Address of buffer in memory. On a disk read, data is

Block Number

written starting at this address. On a disk write, data is
read starting at this address.

- Starting block number to transfer. On a disk read, data is

read starting at this block. On a disk write, data is
written starting at this block.

127

@ MOTOROLA SYSTEM CALLS

5.2.5 .READLN FUNCTION .READLN
TRAP FUNCTION: .READLN - Read line to fixed-length buffer
CODE: $0004

DESCRIPTION: READLN is wused to read a string of characters from the default
input port. Characters are echoed to the default output port.
A string consists of a count byte followed by the characters
read from the input. The count byte indicates the number of
characters in the input string, excluding <CR><LF>. A string
may be up to 254 characters.

ENTRY CONDITIONS:
SP ==> Address of input buffer <long>
EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
The first byte in the buffer indicates the string length.

EXAMPLE: If AO points to a 256-byte buffer;

PEA (A0) Load buffer address
SYSCALL .READLN And read a line from default input port.

NOTES: The caller must allocate 256 bytes for a buffer. Input may be up to
254 characters. <CR><LF> is sent to default output following echo of
input. Control character processing as described in paragraph 1.6,
Terminal Input/Output Control, is in effect.

126

SYSTEM CALLS
@ MOTOROLA

5.2.7 .OUTCHR FUNCTION .OUTCHR
TRAP FUNCTION: .OUTCHR - Output character routine
CODE: $0020

DESCRIPTION: This function outputs a character to the default output port.
ENTRY CONDITIONS:

SP ==> Character <byte>
Word fill <byte> (Placed automatically by MPU)

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
Character is sent to the default I/0 port.

EXAMPLE : MOVE.B DO,-(SP) Send character in DO
SYSCALL .OUTCHR To default output port.

129

@ MOTOROLA SYSTEM CALLS

.DISKRD
.DISKWR

Number of Blocks - This field indicates the number of blocks to be read from
to Transfer the disk (.DSKRD) or written to the disk (.DSKWR).

Address Modifier - VMEbus address modifier to use while transferring data. If
zero, a default value is selected by the bug. If nonzero,
the specified value is used.

ENTRY CONDITIONS:

SP ==> Address <long> Address of command packet
EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack

Status word of command packet is updated.

Data is written into memory as a result of .DSKRD function.
Data is written to disk as a result of .DSKWR function.
Z(ero) = Set to 1 if no errors.

EXAMPLE: If AO, Al point to packets formatted as specified above ...

PEA (AO)

SYSCALL .DSKRD Read from disk

BNE ERROR Branch if error

PEA (A1)

SYSCALL .DSKWR Write to disk

BNE ERROR Branch if error
ERROR. - - XXXXX XXX Handle error

XXXXX XXX

128

SYSTEM CALLS
@ MOTOROLA

5.2.9 .WRITE, .WRITELN FUNCTIONS .WRITE
.WRITELN

TRAP FUNCTIONS: .WRITE - Output string with no CR or LF
WRITELN - Output string with CR and LF

CODES: $0023
$0024

DESCRIPTION: These output functions are designed to output strings formatted
with a count byte followed by the characters of the string. The
user passes the starting address of the string. The output goes
to the default output port.

ENTRY CONDITIONS:

Four bytes of parameter positioned in stack as follows:
SP ==> Address of string <long>
EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
Parameter stack space will have been deallocated.

EXAMPLE: For example, the following section of code ...

MESSAGE1 DC.B 9, *MOTOROLA ’
MESSAGE?2 DC.B 9, ’QUALITY !’

PEA MESSAGE1(PC) Push address of string.
SYSCALL .WRITE Use TRAP #15 macro.

PEA MESSAGE2(PC) Push address of other string.
SYSCALL .WRITE Invoke function again.

. would print out the following message:

MOTOROLA QUALITY!

Using function .WRITELN, however, instead of function .WRITE
would output the following message:

MOTOROLA
QUALITY!

NOTES: The string must be formatted such that the first byte (the byte
pointed to by the passed address) contains the count (in bytes) of the

string. There 1is no special character at the end of the string as a
delimiter.

131

SYSTEM CALLS
M) moToROLA

5.2.8 .OUTSTR, .OUTLN FUNCTIONS .OUTSTR
.OUTLN

TRAP FUNCTIONS: .OUTSTR - Output string to default output port
.OUTLN - Output string along with <CR><LF>

CODES: $0021
$0022

DESCRIPTION: OUTSTR outputs a string of characters to the default output

port. OUTLN outputs a string of characters followed by a
<CR><LF> sequence.

ENTRY CONDITIONS:

SP ==> Address of first character <long>
+4 Address of last character+l <long>

EXIT CONDITIONS DIFFERENT FROM ENTRY:
SP ==> Top of stack

EXAMPLE: If AO

start of string
Al

end of string+l

MOVEM.L AO/Al,-(SP) Load pointers to string
SYSCALL .OUTSTR And print it.

130

SYSTEM CALLS
@ MOTOROLA

.WRITD
-WRITDLN

2. Any data fields within the string must be represented as follows:
"|<radix>,<fieldwidth>[Z]|" where <radix> is the base that the
data is to be displayed in (in hexadecimal, for example, "A" is
base 10, "10" is base 16, etc.) and <fieldwidth> is the number of
characters this data is to occupy in the output. The data is
right justified, and left-most characters are removed to make the
data fit. The "Z" is included if it is desired to suppress
leading zeros in output.

3. A1l data is to be placed in the stack as longwords. Each time a
data field is encountered in the user string, a longword is read
from the data stack to be displayed.

4. The data stack is not destroyed by this routine. If it is
necessary that the space in the data stack be deallocated, then
this must be done by the calling routine, as shown in the
preceding example.

133

c
M) mororoLa SYSTEM CALLS

5.2.10 .WRITD, .WRITDLN FUNCTIONS .WRITD
.WRITDLN

TRAP FUNCTIONS: .WRITD - Output string with data
WRITDLN - Output string with data and <CR><LF>

CODES: $0028
$0025

DESCRIPTION: These trap functions take advantage of the monitor I/0 routine
which outputs a user string which has embedded variable fields
in it. The user passes the starting address of the string and
the address of a data stack from whence the data which is
inserted into the string is read. The output goes to the
default output port.

ENTRY CONDITIONS:
Eight bytes of parameter positioned in stack as follows:

SP ==> Address of string <long>
Data 1ist pointer <long>

A separate data stack or data 1ist arranged as follows:

Data 1list pointer => Data for Ist variable in string <long>

Data for next variable <long>
Data for next variable <long>
etc.

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
Parameter stack space will have been deallocated.

EXAMPLE: For example, the following section of code ...
ERRMESSG DC.B $14,’ERROR CODE = |10,8Z|"’

MOVE.L #3,-(A5) Push error code on data stack.
PEA (A5) Push data stack location.

PEA ERRMESSG(PC) Push address of string.

SYSCALL .WRITDLN Invoke function.

TST.L (A5)+ Deallocate data from data stack.

. would print out the following message:
ERROR CODE = 3

NOTES: 1. The string must be formatted such that the first byte (the byte
pointed to by the passed address) contains the count (in bytes) of
the string (including the data field specifiers, described in 2.
following).

132

SYSTEM CALLS
@ MOTOROLA

5.2.12 .ERASLN FUNCTION ' .ERASLN
TRAP FUNCTION: .ERASLN - Erase Line
CODE: $0027

DESCRIPTION: Erase Tine 1is wused to erase the line at the present cursor
position. If the terminal type flag is set for hardcopy mode, a
<CR><LF> is issued instead.

ENTRY CONDITIONS:

No arguments required.
EXIT CONDITIONS DIFFERENT FROM ENTRY:

The cursor is positioned at the beginning of a blank line.

EXAMPLE: SYSCALL .ERASLN

135

SYSTEM CALLS
@ MOTOROLA

5.2.11 .PCRLF FUNCTION .PCRLF
TRAP FUNCTION: .PCRLF - Print <CR><LF> sequence
CODE: $0026
DESCRIPTION: PCRLF sends a <CR><LF> sequence to the default output port.
ENTRY CONDITIONS:

No arguments or stack allocation required.
EXIT CONDITIONS DIFFERENT FROM ENTRY:

None

EXAMPLE: SYSCALL .PCRLF Output CRLF

134

SYSTEM CALLS
@ MOTOROLA

5.2.14 .DT_INI FUNCTION .DT_INI
TRAP FUNCTION: .DT_INI - Date initialization
CODE: $0041

DESCRIPTION: .DT_INI initializes the MM58274 Real-Time Clock with the date
that is located in a user-specified buffer.

The data input format can be either ASCII or unpacked BCD. The
order of the data in the buffer is:

begin buffer ---+ +--- buffer + five bytes
ENTRY CONDITIONS:
SP ==> Date initialization buffer (address)
EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
Parameter is deallocated from stack.

EXAMPLE: Date is to be initialized to Nov. 18, 1985

Data in BUFFER is 3835 3131 3138 or
x8x5 x1x1 x1x8. (x = don’t care)

PEA BUFFER Put buffer address on stack
SYSCALL .DT_INI Initialize date and start clock

137

SYSTEM CALLS
@ MOTOROLA

5.2.13 .TM_INI FUNCTION .TM_INI

TRAP FUNCTION: .TM_INI - Time initialization
CODE: $0040

DESCRIPTION: .TM_INI initializes the MM58274 Real-Time Clock with the time
that is located in a user-specified buffer.

The data input format can be either ASCII or unpacked BCD. The
order of the data in the buffer is:

begin buffer ---+ +--- buffer + five bytes
ENTRY CONDITIONS:
SP ==> Time initialization buffer (address)
EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
Parameter is deallocated from stack.

EXAMPLE: Time is to be initialized to 2:05:32 PM

Data in BUFFER is 3134 3035 3332 or
x1x4 x0x5 x3x2. (x = don’t care)

PEA BUFFER Put buffer address on stack
SYSCALL .TM_INI Initialize time and start clock

136

@ MOTOROLA SYSTEM CALLS

5.2.16 .TM_RD FUNCTION .TM_RD
TRAP FUNCTION: .TM RD - Read the RTC registers
CODE: $0043

DESCRIPTION: .TM RD is used to read the Real-Time Clock registers. The data
returned is in unpacked BCD. The Tast byte of the returned data
is the Status Register; bit #3 indicates whether the RTC has
been accessed since the last change of time.

The order of the data in the buffer is:

begin buffer -——L l—-— buffer + 13 bytes
ENTRY CONDITIONS:

SP ==> Buffer address where RTC data is to be returned <long>
EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Top of stack
Buffer now contains date and time in unpacked BCD format.

EXAMPLE : A date and time of May 11, 1985 2:05:32.7 would be returned
in the buffer as:
0805 0005 0101 0104 0005 0302 070x

(where x = don’t care)

LEA BUFFER(PC),A0 Fix buffer pointer for result
PEA (AO) Put buffer address on stack
SYSCALL .TM RD Read timer

139

@ MOTOROLA SYSTEM CALLS

5.2.15 .TM DISP FUNCTION .TM _DISP
TRAP FUNCTION: .TM DISP - Display time from RTC
CODE: $0042

DESCRIPTION: .TM DISP displays the date and time from the current cursor
position. The format is as follows:

MM/DD/YY hh:mm:ss.s
ENTRY CONDITIONS:
No arguments required
EXIT CONDITIONS DIFFERENT FROM ENTRY:
The cursor is left at the end of the string.

EXAMPLE: SYSCALL .TM DISP Displays the date and time on the console.

138

@ MOTOROLA SYSTEM CALLS

5.2.18 .REDIR I, .REDIR O FUNCTIONS .REDIR I
.REDIR 0

TRAP FUNCTIONS: .REDIR I - Redirect input
.REDIR 0 - Redirect output

CODES: $0061
$0062

DESCRIPTION: The .REDIR I and .REDIR O functions are used to change the
default port number of the input and output ports, respectively.
This is a permanent change, that is, it remains in effect until
a new .REDIR command is issued.
ENTRY CONDITIONS:
SP ==> Port Number <word>
EXIT CONDITIONS DIFFERENT FROM ENTRY:
SP ==> Top of stack
SIO IN - Loaded with a new mask if .REDIR_ I called
SI0O OUT - Loaded with a new mask if .REDIR O called

EXAMPLE : MOVE.W #1,-(SP) Load port number
SYSCALL .REDIR_I Set it as the new default

141

M) mororoLa SYSTEM CALLS

5.2.17 .REDIR FUNCTION .REDIR

TRAP FUNCTION: .REDIR - Redirect I/0 function

CODE: $0060

DESCRIPTION: .REDIR is used to select an I/0 port and at the same time invoke
a particular I/0 function. The invoked I/0 function reads or
writes to the selected port.

ENTRY CONDITIONS:

SP ==> Port <word>
I/0 function to call <word>
Parameters of I/0 function <size specified by function>
Space for results <size specified by function>

EXIT CONDITIONS DIFFERENT FROM ENTRY:
SP ==> Result <size specified by function>

EXAMPLE: i

NOTES: To use .REDIR, the caller should first allocate space and push the
parameters required by the desired I/0 function in the stack:

SUBQ.L #2 ,A7 Allocate space (no parameters
required by .INCHR)

Then the parameters required by .REDIR should be pushed and a call is
made to .REDIR:

MOVE.W #.INCHR,-(SP) Load function code
MOVE.W #1,-(SP) Load port number
SYSCALL .REDIR Redirect I/0 function

Finally, the results are popped from the stack:
MOVE.B (SP)+,D0 Read character

The above example reads a character from port 1 using .REDIR.

140

SYSTEM CALLS
@ MOTOROLA

5.2.20 .BINDEC FUNCTION .BINDEC

TRAP FUNCTION: .BINDEC FUNCTION (Used to calculate the Binary Coded Decimal
(BCD) equivalent of the binary number specified)

CODE: $0064

DESCRIPTION: .BINDEC takes a 32-bit unsigned binary number and changes it to
an equivalent BCD number.

ENTRY CONDITIONS:

SP ==> Argument:Hex number<long>
Space for result <2 Tong>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Decimal number (2 most significant DIGITS) <long>
(8 least significant DIGITS) <long>

EXAMPLE : SUBQ.L #8,A7 Allocate space for result
MOVE.L DO,-(SP) Load hex number
SYSCALL .BINDEC Call .BINDEC

MOVE.L (SP)+,D1/D2 Load result

143

SYSTEM CALLS
@ MOTOROLA

5.2.19 .RETURN FUNCTION + +RETURN
TRAP FUNCTION: .RETURN - Return to 133Bug
CODE: $0063

DESCRIPTION: .RETURN is wused to return control to 133Bug from the target
program in an orderly manner. First, any breakpoints inserted
in the target code are removed. Then, the target state is saved

in the register image area. Finally, the routine returns to
133Bug.

ENTRY CONDITIONS:
No arguments required.
EXIT CONDITIONS DIFFERENT FROM ENTRY:
Control is returned to 133Bug.
EXAMPLE: SYSCALL .RETURN Return to 133Bug.

NOTES: .RETURN must be used only by code that was started using 133Bug.

142

u REGISTER (MSR
M) moToroLA MVME133 MODULE STATUS RE (MSR)

APPENDIX A
MVME133 MODULE STATUS REGISTER (MSR)

In addition to the status and control bits that are implemented in the
MC68901, the MVMEI33 has eight status bits that are read only, have no
latching mechanism, and cause no interrupts (with one exception). These bits
are called the Module Status Register (MSR). Because of hardware savings, the
MSR and the MC68901 are grouped together and appear as a 16-bit word port to
the MPU. Therefore, it is important to note that even though the MSR ignores
all write accesses, a write to the MSR will affect the MC68901.

The MC68901 appears on the Tower byte of the word, and the MSR appears on the
upper byte. The bit assignments for the MSR are:

BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8

l
T o S S i, i o B R e g S e e s s +

ACFAIL - When ACFAIL* is low, this bit is 1. When ACFAIL* is high, it is
0. [ACFAIL] is also an input to the interrupt handler.

SYSCON - If this module is the system controller, J1 pins 1-2 are
connected, and this bit is 1. When it is not the system
controller, the pins are open, and this bit is 0.

PWRUP* - This bit is set to 0 only by Power-Up reset when power is first
applied to the MVME133.” A read cycle to the real-time clock
resets this bit to a 1.

SRBIT4 - This .bit is 0 when JI5 pins 9-10 are connected, and is 1 when
they are open.

SRBIT3 - This bit is 0 when J15 pins 7-8 are connected, and is 1 when they
are open.

SRBIT2 - This bit is 0 when J15 pins 5-6 are connected, and is 1 when they
are open.

SRBITI - This bit is 0 when JI5 pins 3-4 are connected, and is 1 when they
are open.

SRBITO - This bit is 0 when Ji5§ pins 1-2 are connected, and is 1 when they
are open.

The MSR appears in the main memory map of the MVMEI33 at Tocations $XXF80000
through $XXF8002E, even bytes only, and is repeated throughout locations
$XXF80030 through $XXFOFFFE. The MC68901 Multi-Function Peripheral (MFP)
occupies the odd bytes. FEven though the MSR is read-only, it should not be
written to, because cycles that access the MSR also access the MFP.

145

@ MOTOROLA SYSTEM CALLS

5.2.21 .CHK_SUM FUNCTION .CHK_SUM
TRAP FUNCTION: .CHK_SUM - Generate checksum for address range
CODE: $0068B

DESCRIPTION: This function generates a checksum for an address range that is
passed in as arguments.

ENTRY CONDITIONS:

SP ==> Beginning address <long>
Ending address + 1 <long>
Space for checksum <word>

EXIT CONDITIONS DIFFERENT FROM ENTRY:

SP ==> Checksum <word>
EXAMPLE : CLR.W -(SP) Make room for the checksum.
PEA Al Push pointer to ending address + 1.
PEA AO Push pointer to starting address.
SYSCALL .CHK_SUM Invoke TRAP #15 call.
MOVE.W (SP)+,D0 Load DO.W with checksum (EE00)
’ MSB=even LSB=o0dd B
NOTES: 1. If a Bus Error results from this routine, then the bug bus error
exception handler is invoked and the calling routine is also
aborted.
2. The calling routine must insure that the beginning and ending
addresses are on word boundaries or the integrity of the checksum
cannot be guaranteed.

144

@ MOTOROLA

DEBUGGING PACKAGE MESSAGES

APPENDIX B

DEBUGGING PACKAGE MESSAGES

DEBUGGER ERROR MESSAGES

Error Status: XXXX

***% I11egal argument ***
Invalid command

Invalid LUN

*** Invalid Range **x

<part of S-record data>

RAM FAIL AT $XXXXXXXX

STATUS No error since start of
Upload of S-Records complete.

MEANING

Disk communication error status word when
IOP command, or .DSKRD or .DSKWR TRAP #15
functions, are unsuccessful. Refer to
Appendix F for details.

Improper argument in known command.
Unknown command.

Controller and device selected during IOT
command do not correspond to a valid
controller and device.

Range entered wrong in BF, BI, BM, BS, or DU
commands.

Printed out if non-hex character is
encountered in data field in L0 or VE
commands.

Parity s not correct at address $XXXXXXXX
during a BI command.

program
Message from VERSAdos UPLOADS utility after
successful DU command.

The following record(s) did not verify

SNXXYYYYAAAA. Llsw vovrpis CS

¥% Unknown Field ***
Verify passes

VMEbus Bus Time-out

Failure during the LO or VE commands. ZZ is
the non-matching byte and CS is the non-
matching checksum.

Message and pointer ("*") to field of
suspected error when using ;DI option

in MM command.

Successful VE command.

Referenced nonexisting memory in MD command.

147

M) moToroLA

MVME133 MODULE STATUS REGISTER (MSR)

THIS PAGE INTENTIONALLY LEFT BLANK.

146

@ MOTOROLA DEBUGGING PACKAGE MESSAGES

DIAGNOSTIC ERROR MESSAGES (cont’d) MEANING

RTC did not interrupt RTC Test error message.

SIO0 Receive Error Code $XX MFP Funct. Test error message. $XX is
contents of MC68901 Receiver Status
Register.

Test failed FPC routine at FXXXXXXXX

FPC Test error message. $XXXXXXXX is
address of part of test that failed.

Test failed routine at FXXXXXXXX MPU Register, Instruction, or Address Mode
Test error message. $XXXXXXXX is the
address of the part of the test that

failed.

Test Failed Vector $XX MPU Exception Processing Test error
message. $XX is the exception vector
offset.

Tx/Rx Problem; did not get expected interrupt
MFP Functionality Test error message.

Unexpected Bus Error MPU Address Mode, MFP Functionality, RTC,
or 78530 Functionality Test error message.

Unexpected Exception Taken MPU Exception Processing Test error
message.

Unexpected interrupt FPC Test error message.

Unexpected MFP Interrupt(interrupt was disabled)
MFP Functionality Test error message.

Unit Sec. greater than 1 RTC Test error message.

(Unit/Tens) <time> <> (0,1) RTC Test error message. <time> goes from
Sec. to Years.

OTHER MESSAGES MEANING

133Bug> Debugger prompt.

133Diag> Diagnostic prompt.

At Breakpoint Indicates program has stopped at
breakpoint.

!IBreak!! BREAK key on console has stopped operation.

COLD Start Vectors have been initialized.

149

SAG
(M) MmoToroLA DEBUGGING PACKAGE MESSAGES

DIAGNOSTIC ERROR MESSAGES MEANING

68901 Register test failed Power-up test error message.

Bad SIO Xfer: expected $YY,received $7Z
MFP Functionality Test error message.

N CACHE (HITS!/MISSES!) MC68020 Cache Tests error message,
CACHED IN XXXX MODE, RERAN IN XXXX MODE where N is a number and XXXX is
..... FAILED SUPY or USER.

CPU Addressing Modes test failed Power-up test error message.

CPU Instruction test failed Power-up test error message.
CPU Register test failed Power-up test error message.
Day not 1 RTC Test error message.

Did not receive interrupt from Timer (A/D)
MFP Functionality Test error message.

Error Code = $XXXX 78530 Funct1ona11ty Test error message.
$XXXX is explained in the test writeup.

Exception Processing test failed Power-up test error message.

FC TEST ADDR 10987654321098765432109876543210 EXPECTED READ

N NNNNNNNN - cmemm oo X-X------ NNNNNNNN NNNNNNNN
Error message display format for Memory
Tests E - J, where the N’s are numbers.

Got Bus Error when reading from ROM
Bus Error Test error message.

Insufficient Memory Memory Test I Program Test error message

PASSED when the range of memory selected is less
than 388 bytes and the program segment
cannot be copied into RAM.

Interrupt flag not set in Status Reg.
RTC Test error message.

No Bus Error when (writing to/reading from) BAD address space
Bus Error Test error message.

No FPC detected FPC Test error message when there is no FPC
on the MVME133 module.

RAM test failed Power-up test error message.

ROM test failed Power-up test error message.

148

S-RECORD OUTPUT FORMAT
@ MOTOROLA

APPENDIX C
S-RECORD OUTPUT FORMAT

The S-record format for output modules was devised for the purpose of encoding
programs or data files 1in a printable format for transportation between
computer systems. The transportation process can thus be visually monitored
and the S-records can be more easily edited.

S-RECORD CONTENT

When viewed by the user, S-records are essentially character strings made of
several fields which identify the record type, record length, memory address,
code/data, and checksum. Each byte of binary data is encoded as a 2-character
hexadecimal number: the first character representing the high-order 4 bits,
and the second the Tow-order 4 bits of the byte.

The five fields which comprise an S-record are shown below:
Fommmme Fommmmeee L oo Form s s s tmE s s s e T +
| type | record Tength | address | code/data | checksum |
Homemm o e T T . oo Fioitis o e e oS s g e +

where the fields are composed as follows:

PRINTABLE
FIELD CHARACTERS CONTENTS

type 2 S-record type -- §0, S1, ete.

record length 2 The count of the character pairs in the record,
excluding the type and record length.

address 4, 6, or 8 The 2-, 3-, or 4-byte address at which the data
field is to be loaded into memory.

code/data 0-2n From 0 to n bytes of executable code, memory-
loadable data, or descriptive information. For
compatibility with teletypewriters, some programs
may Timit the number of bytes to as few as 28 (56
printable characters in the S-record).

checksum 2 The least significant byte of the one’s

complement of the sum of the values represented
by the pairs of characters making up the record
length, address, and the code/data fields.

151

@ MOTOROLA

OTHER MESSAGES (cont’d)
Data = $XX

Effective address: XXXXXXXX

Effective count : &XXX

Escape character: $HH=AA

DEBUGGING PACKAGE MESSAGES

MEANING

XX is truncated data cut to fit data field
size during BF or BV commands.

Exact Tocation of data during BF, BI, BM,
BS, BV, DU, and EEP commands; or where
program was executed during GD, GN, GO, and
GT commands.

Actual number of data patterns acted on
during BF, BI, BS, BV, or EEP commands; or
the number of bytes moved during DU command.

Exit code from transparent mode, in hex (HH)
and ASCII (AA) during TM command.

Initial data = $XX, increment = $YY

XX is starting data and VYY is truncated
increment cut to fit data field size during
BF or BV commands.

-last match extends over range boundary-

Logical unit $XX unassigned

No printer attached

-not found-

OK to proceed (y/n)?

Press "RETURN" to continue

UPLOAD "S" RECORDS
Version x.y

Copyrighted by MOTOROLA, INC.

volume=xxxx
catlg=xxxx
file=FILEl
ext=MX

WARM Start

String found in BS command ends outside
specified range.

Message that may be output during PA or PF
commands. $XX is a hex number indicating
the port involved.

Message that may be output during NOPA
command.

String not found in BS command.

"Interlock" prompt before configuring port
in PF command.

Message output during BS command when more
than 24 Tines of matches are found.

Message from VERSAdos UPLOADS utility during
DU command.

Vectors have not been initialized.

150

-RECORD OUTPUT FORMAT
@ MOTOROLA S-RECORD 0 1P

S8 A termination record for a block of S2 records. The address field
may optionally contain the 3-byte address of the instruction to which
control is to be passed. There is no code/data field.

S9 A termination record for a block of S1 records. The address field
may optionally contain the 2-byte address of the instruction to which
control is to be passed. Under VERSAdos, the resident linker’s ENTRY
command can be used to specify this address. If not specified, the
first entry point specification encountered in the object module
input will be used. There is no code/data field.

Only one termination record is used for each block of S-records. S7 and S8
records are usually used only when control is to be passed to a 3- or 4-byte
address. Normally, only one header record is used, although it is possible
for multiple header records to occur.

CREATION OF S-RECORDS

S-record-format programs may be produced by several dump utilities, debuggers,
VERSAdos’ resident Tinkage editor, or several Cross assemblers or cross
lTinkers. On VERSAdos, the Build Load Module (MBLM) utility allows an
executable Tload module to be built from S-records, and has a counterpart
utility in BUILDS, which allows an S-record file to be Ccreated from a load
module.

Several programs are available for downloading a file in S-record format from
a host system to an 8-bit microprocessor-based or a 16-bit microprocessor-
based system. Programs are also available for uploading an S-record file to
or from an EXORmacs system.

EXAMPLE

Shown below is a typical S-record-format module, as printed or displayed:

500600004844521B
Sl130000285F245F2212226A000424290008237C2A
Sl1300100002000800082629001853812341001813
Sl13002041E900084E42234300182342000824A952
$107003000144ED492

S9030000FC

The module consists of one SO record, four S1 records, and an S9 record.

153

S-RECORD OUTPUT FORMAT
@ MOTOROLA

Each record may be terminated with a CR/LF/NULL. Additionally, an S-record
may have an initial field to accommodate other data such as line numbers
generated by some time-sharing system.

Accuracy of transmission is ensured by the record length (byte count) and
checksum fields.

S-RECORD TYPES

Eight types of S-records have been defined to accommodate the several needs of
the encoding, transportation, and decoding functions. The various Motorola
upload, download, and other record transportation control programs, as well as
cross assemblers, 1linkers, and other file-creating or debugging programs,
utilize only those S-records which serve the purpose of the program. For
specific information on which S-records are supported by a particular program,
the user’s manual for that program must be consulted. 133Bug supports SO, SI,
S2, S3, S7, S8, and S9 records.

An S-record-format module may contain S-records of the following types:

SO The header record for each block of S-records. The code/data field
may contain any descriptive information identifying the following
block of S-records. Under VERSAdos, the resident linker’s IDENT
command can be used to designate module name, version number,
revision number, and description information which will make up the
header record. The address field is normally zeroes.

S1 A record containing code/data and the 2-byte address at which the
code/data is to reside.

S2 A record containing code/data and the 3-byte address at which the
code/data is to reside.

S3 A record containing code/data and the 4-byte address at which the
code/data is to reside.

S5 A record containing the number of S1, S2, and S3 records transmitted

in a particular block. This count appears in the address field.
There is no code/data field.

S7 A termination vrecord for a block of S3 records. The address field

may optionally contain the 4-byte address of the instruction to which
control is to be passed. There is no code/data field.

152

@ MOTOROLA S-RECORD OUTPUT FORMAT

The S9 record is explained as follows:
S9 S-record type S9, indicating that it is a termination record.

03 Hexadecimal 03, indicating that three character pairs (3 bytes)
follow.

00 The address field, zeroes.
00

FC The checksum of the S9 record.

Each printable character in an S-record is encoded in hexadecimal (ASCII in
this example) representation of the binary bits which are actually
transmitted. For example, the first S1 record above is sent as:

TYpe LENGTH ADDRESS CODE /DATA CHECKSUM

0101 {0011 0011|0001 | 00110001 0011|0011 | 0011 |0000] 0011 0000 00110000 0011|0000 | 00110010 0011 {1000 | 0011 0101 j0

g

0110} -~ - 0011 |0010(0100 | DOOI

155

@ MOTOROLA S-RECORD OUTPUT FORMAT

The SO record is comprised of the following character pairs:
SO S-record type SO, indicating that it is a header record.

06 Hexadecimal 06 (decimal 6), indicating that six character pairs (or
ASCII bytes) follow.

00 Four-charactey 2-byte address field, zeroes in this example.
00

48
44 ASCII H, D, and R - "HDR".
52 :

1B The checksum.

The first S1 record is explained as follows:

S1 S-record type SI, indicating that it is a code/data record to be
Toaded/verified at a 2-byte address.

13 Hexadecimal 13 (decimal 19), indicating that 19 character pairs,
representing 19 bytes of binary data, follow.

00 Four-character 2-byte address field; hexadecimal address 0000, where
00 the data which follows is to be loaded.

The next 16 character pairs of the first S1 record are the ASCII bytes of the
actual program code/data. In this assembly language example, the hexadecimal
opcodes of the program are written in sequence in the code/data fields of the
S1 records:

OPCODE INSTRUCTION

285F MOVE. L (A7)+,A4

245F MOVE. L (A7)+,A2

2212 MOVE.L (A2),D1

226A0004 MOVE. L 4(A2),A1

24290008 MOVE. L FUNCTION(A1),D2

237C MOVE. L #FORCEFUNC,FUNCTION(AI)

(The balance of this code is continued in the
code/data fields of the remaining S1 records,
and stored in memory location 0010, etc.)

2A The checksum of the first S1 record.
The second and third SI records each also contain $13 (19) character pairs and

are ended with checksums 13 and 52, respectively. The fourth S1 record
contains 07 character pairs and has a checksum of 92.

154

(::)Aﬂ()TT)F?()LII

VIDOSS
VIDOSL
VIDOSA

VIDCAS
VIDCAL
VIDMOT

I0SATM
I0OSPRM
IOSATH
IOSREC
I0SSPT
I0SHDS
IOSTRK
I0SILV
I0SPSM
I0SSOF
IOSSHD
I0SPCOM
I0SSR
IOSRWCC
I0SECC

INFORMATION USED BY BO AND BH COMMANDS

APPENDIX D
INFORMATION USED BY BO AND BH COMMANDS
VOLUME ID BLOCK #0 (VID)

OFFSET$(&) LENGTH (BYTES) CONTENTS
"$18 (20) 4 Starting block number of operating system.
$18 (24) 2 Operating system length in blocks.

$1E (30) 4 Starting memory location to Toad operating

system.

$90 (144) 4 Media configuration area starting block.

$94 (148) 1 Media configuration area length in blocks.
$F8 (248) 8 Contains the string "MOTOROLA" or "EXORMACS".

OFFSET$(&) LENGTH (BYTES) CONTENTS
RO8 @) s e AESTAGEES KL v ¢ ot s owo
$06 (6) 2 Parameters mask.

$08 (8) 2 Attributes word.

$0A (10) 2 Record (block) size in bytes.

$18 (24) 1 Sectors/track.

$19 (25) 1 Number of heads on drive.

$1A (26) 2 Number of cylinders.

$1C (28) 1 Interleave factor on media.

$1E (30) 2 Physical sector size of media in bytes.
$1D (29) 1 Spiral offset.

$20 (32) 2 Starting head number.

$24 (36) 2 Precompensation cylinder.

$27 (39) 1 Stepping rate code.

$28 (40) 2 Reduced write current cylinder number.
$2A (42) 2 ECC data burst Tength.

157

@ MOTOROLA S-RECORD OUTPUT FORMAT

THIS PAGE INTENTIONALLY LEFT BLANK.

156

W) moToroLA INFORMATION USED BY BO AND BH COMMANDS

I0SPRM and IOSEPRM

A "1" in a particular bit position indicates that the corresponding parameter
from the configuration area (CFGA) should be used to update the device
configuration. A "0" in a bit position indicates that the parameter value in
the current configuration will be retained.

IOSPRM PARAMETER MASK BIT DEFINITIONS

IOSRECB 0 Operating system block size.
IOSSPTB 4 Sectors per track.

I0SHDSB 5 Number of heads.

I0OSTRKB 6 Number of cylinders.

I0SILVB 7 Interleave factor.

10SSOFB 8 Spiral offset.

I0SPSMB 9 Physical sector size.

I0SSHDB 10 Starting head number.

10SPCOMB 12 Precompensation cylinder number.
IOSSRB 14 Step rate code.

TIOSRWCCB 15 Reduced write current cylinder number

and ECC data burst length.

I0AGPB1 0 Gap byte 1.
I0AGPB2 1 Gap byte 2.
I0AGPB3 2 Gap byte 3.
I0AGPB4 3 Gap byte 3.
I0ASSC 4 Spare sector count.

159

@ MOTOROLA INFORMATION USED BY BO AND BH COMMANDS

CONFIGURATION AREA BLOCK (CFGA) (cont’d)

LABEL OFFSET$(&) LENGTH (BYTES) CONTENTS

I0SEATN. S2C (44) 2 Extended attrimetes meer T
IOSEPRM $2E (46) 2 Extended parameters mask.

IOSEATH $30 (48) 2 Extended attributes word.

IOSGPB1 $32 (50) 1 Gap byte 1.

I0SGPB2 $33 (51) 1 Gap byte 2.

IOSGPB3 $34 (52) 1 Gap byte 3.

I0SGPB4 $35 (53) 1 Gap byte 4.

I0SSSC $36 (54) 1 Spare sectors count.

IOSATM and IOSEATM

A "1" in a particular bit position indicates that the corresponding attribute
from the attributes (or extended attributes) word should be used to update the
configuration. A "0" in a bit position indicates that the current attribute
should be retained.

IOSATM ATTRIBUTE MASK BIT DEFINITIONS

IOADDEN 0 Data density.

IOATDEN 1 Track density.

IOADSIDE 2 Single/double sided.

IOAFRMT 3 Floppy disk format.

IOARDISC 4 Disk type.

IOADDEND 5 Drive data density.

IOATDEND 6 Drive track density.

IOARIBS 7 Embedded servo drive seek.

TOADPCOM 8 Post-read/pre-write precompensation.
IOASIZE 9 Floppy disk size.

158

NDS
@ MOTOROLA INFORMATION USED BY BO AND BH COMMAND

PARAMETER FIELD DEFINITIONS

PARAMETER DESCRIPTION

Record Size Number of bytes per record (block). Must be an integer
(Block) multiple of the physical sector size.

Sectors/track Number of sectors per track.

Number of heads Number of recording surfaces for the specified device.

Number of cylinders Number of cylinders on the media.

Interleave factor This field specifies how the sectors are formatted on a
track. Normally, consecutive sectors in a track are
numbered sequentially 1in increments of 1 (interleave
factor of 1). The interleave factor controls the
physical separation of TJlogically sequential sectors.
This physical separation gives the host time to prepare
to read the next Togical sector without requiring the
loss of an entire disk revolution.

Physical sector size Actual number of bytes per sector on media.

Spiral offset Used to displace the logical start of a track from the
physical start of a track. The displacement is equal to
the spiral offset times the head number, assuming that
the first head is 0. This displacement is used to give
the controller time for a head switch when crossing
tracks.

Starting head number Defines the first head number for the device.

Precompensation Defines the cylinder on which precompensation begins.
cylinder

Stepping rate code The step rate is an encoded field used to specify the
rate at which the read/write heads can be moved when
seeking a track on the disk. The encoding is as follows:

Step Rate Winchester 5 1/4-inch 8-inch
Code Hard Disks Floppy Floppy
000 0 msec 12 msec 6 msec
001 6 msec 6 msec 3 msec
010 10 msec 12 msec 6 msec
011 15 msec 20 msec 10 msec
100 20 msec 30 msec 15 msec

161

(::) MOTOROLA

IOSATW attributes word.
of the media and drive.

IOSATW BIT DEFINITIONS

BIT NUMBER DESCRIPTION ™
Bit 0 Data density: 0 = Single density (FM encoding)
1 = Double density (MFM encoding)
Bit 1 Track density: 0 = Single density (48 tpi)
1 = Double density (96 tpi)
Bit 2 Number of sides: 0 = Single sided floppy
1 = Double sided floppy
Bit 3 Floppy disk format: 0 = Motorola format
(sector numbering) 1 to N on side 0
N+1 to 2N on side 1
1 = Standard IBM format
1 to N on both sides
Bit 4 Disk type: 0 = Floppy disk
1 = Hard disk
Bit 5 Drive data density: 0 = Single density (FM encoding) —
1 = Double density (MFM encoding)
Bit 6 Drive track density: 0 = Single density
1 = Double density
Bit 7 Imbedded servo drive: 0 = Do not seek on head switch
1 = Seek on head switch
Bit 8 Post-read/pre-write precompensation: 0 = Pre-write
1 = Post-read
Bit 9 Floppy disk size: 0 =5 1/4-inch floppy
1 = 8-inch floppy
Bits 10-15 Reserved (must be zero).

160

INFORMATION USED BY BO AND BH COMMANDS

Contains various flags that specify characteristics

DISK CONTROLLER DATA
@ MOTOROLA

APPENDIX E
DISK CONTROLLER DATA

DISK CONTROLLER MODULES SUPPORTED

The following VMEbus disk controller modules are supported by 133Bug:
1. MVME320 - VMEbus Winchester/Floppy Controller
2. MVME319 - VMEbus SCSI/Floppy/Tape Controller
3. MVME360 - VMEbus SMD Controller

DISK CONTROLLER DEFAULT CONFIGURATIONS

Controller LUN O
Controller Type : MVME320
Controller Address : $FFFFBO0O
Number of Devices : 4

Devices : DLUN 0 = 40Mb Winchester hard drive WIN4O
DLUN 1 = 40Mb Winchester hard drive WIN4O
DLUN 2 = 5-1/4" DS/DD 96 tpi floppy drive FLP5
DLUN 3 = 5-1/4" DS/DD 96 tpi floppy drive FLP5

Controller LUN 1
Controller Type : MVME319
Controller Address : $FFFF0000
Number of Devices : 8

Devices : DLUN 0 = 40Mb Winchester (NOTE) WIN4O
DLUN 1 = 40Mb Winchester (NOTE) WIN4O
DLUN 2 = 40Mb Winchester (NOTE) WIN4O
DLUN 3 = 40Mb Winchester (NOTE) WIN4O
DLUN 4 = 8" DS/SD Motorola format floppy drive FLP8
DLUN 5 = 8" DS/SD Motorola format floppy drive FLP8
DLUN 6 = 5-1/4" DS/DD 96 tpi floppy drive FLP5
DLUN 7 = 5-1/4" DS/DD 96 tpi floppy drive FLP5

NOTE

Devices 0 through 3 are accessed via the SCSI interface on the MVME319.
An ADAPTEC ACB-4000 Winchester Disk Controller module is vrequired to
interface between the SCSI and the disk drive. Refer to the MVME3I19
User’s Manual for further information.

163

INFORMATION USED BY BO AND BH COMMANDS
@ MOTOROLA

Reduced write This field specifies the cylinder number at which the
current cylinder write current should be reduced when writing to the
drive. This parameter is normally specified by the drive

manufacturer.

ECC data burst This field defines the number of bits to correct for an

length ECC error when supported by the disk controller.

Gap byte 1 This field contains the number of words of zeros that are
written before the header field in each sector during
format.

Gap byte 2 This field contains the number of words of zeros that are

written between the header and data fields during format
and write commands.

Gap byte 3 This field contains the number of words of zeros that are
written after the data fields during format commands.

Gap byte 4 This field contains the number of words of zeros that are

written after the last sector of a track and before the
index pulse.

Spare sectors count This field contains the number of sectors per track

allocated as spare sectors. These sectors are only used
as replacements for bad sectors on the disk.

162

o~

TUS CODES
@ MOTOROLA DISK COMMUNICATION STA

APPENDIX F
DISK COMMUNICATION STATUS CODES

The status word vreturned by the disk TRAP #15 routines flags an error
condition if it dis nonzero. The most significant byte of the status word
reflects controller independent errors, and they are generated by the disk
trap routines. The 1least significant byte reflects controller dependent

errors, and they are generated by the controller. The status word is shown
below:

$00 No error detected.

$01 Invalid controller type.

$02 Controller descriptor not found.
$03 Device descriptor not found.

$04 Controller already attached.

$05 Descriptor table not available.
$06 Invalid packet.

$07 Invalid address for transfer.

$0 Correct execution without error.

$1 Nonrecoverable error which cannot be
completed (auto retries were attempted).

$2 Drive not ready.

$3 Reserved.

$4 Sector address out of range.

$5 Throughput error (floppy data overrun).

$6 Command rejected (illegal command).

$7 Busy (controller busy).

$8 Drive not available (head out of range).

$9 DMA operation cannot be completed
(VMEbus error).

$A Command abort (reset busy).

$B-$FF Not used.

165

@ MOTOROLA

Controller LUN 2
Controller Type

Controller Address :

Number of Devices
Devices

Controller LUN 3
Controller Type

Controller Address :

Number of Devices
Devices

DISK CONTROLLER DATA

: MVME360
$FFFFOCO0

: 4 (NOTE)

: DLUN 0 = 2333K Fujitsu SMD drive (512b sectors) FJI20
DLUN 1 = null device (SMD half) SMDHALF
DLUN 2 = 2322K Fujitsu SMD drive (512b sectors) FJI10
DLUN 3 = null device (SMD half) SMDHALF

: MVME360
$FFFFOE0O

: 4 (NOTE)

: DLUN 0 = 2322K Fujitsu SMD drive (256b sectors) FJI10V
DLUN 1 = null device (SMD half) SMDHALF
DLUN 2 = 80Mb fixed CMD drive FXCMD80
DLUN 3 = 16Mb removable CMD drive RMCMD16

NOTE

Only two physical SMD drives may be connected to an
MVME360 controller, but the drive may be given two
DLUNs, as is the case for Controller LUN 3 above.

164

@ MOTOROLA

DISK COMMUNICATION STATUS CODES

MVME360 Controller-Dependent Status Codes (cont’d)

$70-76
$77
$78
$79-EF
$FO-FE

RTZ time-out.

Invalid sync in header.

Not used.

Unit not initialized.

Not used.

Gap specification error.

Not used.

Seek error.

Mapped header error.

Not used.

Sector per track error.

Bytes per sector specification error.
Interleave specification error.
Invalid head address.

Invalid cylinder address.

Not used.

Invalid DMA transfer count.

Not used.

IOPB failed.

DMA failed.

I1legal VME address.

Not used.

Unrecognizable header field.

Mapped header error.

Not used.

No spare sector enabled.

Not used.

Command aborted.

ACFAIL detected.

Not used.

Unforseen error - call your Field
Service representative, and tell them
the IOPB and UIB information that was
available at the time that the error
occurred.

Command not implemented.

167

K COMMUNICATION STATUS CODES
@ MOTOROLA D

MVME319 Controller-Dependent Status Codes

$0 Correct execution without error.
$1 Data CRC/ECC error.

$2 Disk write protected.

$3 Drive not ready.

$4 Deleted data mark read.
$5 Invalid drive number.

$6 Invalid disk address.

$7 Restore error.

$8 Record not found.

$9 Sector ID CRC/ECC error.
$A VMEbus DMA error.

$F Controller error.

$10 Drive error.

$11 Seek error.

$19 I/0 DMA error.

$10 Disk not ready.

$11 Not used.

$12 Seek error.

$13 ECC code error-data field.
$14 Invalid command code.

$15 I17egal fetch and execute command.
$16 Invalid sector in command.
$17 I1Tegal memory type.

$18 Bus time-out.

$19 Header checksum error.

$1A Disk write protected.

$1B Unit not selected.

$1C Seek error time-out.

$1D Fault time-out.

$1E Drive faulted.

$1F Ready time-out.

$20 End of medium.

$21 Translation fault.

$22 Invalid header pad.

$23 Uncorrectable error.

$24 Translation error, cylinder.
$25 Translation error, head.
$26 Translation error, sector.
$27 Data overrun.

$28 No index pulse on format.
$29 Sector not found.

$2A ID field error -- wrong head.
$2B Invalid sync in data field.
$2C No valid header found.

$2D Seek time-out error.

$2E Busy time-out.

$2F Not on cylinder.

166

133Bug DIAGNOSTIC FIRMWARE GUIDE
@ MOTOROLA

APPENDIX G
133Bug DIAGNOSTIC FIRMWARE GUIDE

TABLE OF CONTENTS

SCOPE

OVERVIEW OF DIAGNOSTIC FIRMWARE
SYSTEM START-UP

DIAGNOSTIC MONITOR

1 Monitor Start-up

2 Command Entry and Directories

3 HELP - Command "HE"

4 SELF-TEST - Prefix/Command "ST"
+ 5 SWITCH DIRECTORIES - Command "SD"
6 LOOP-ON-ERROR MODE - Prefix "LE"
74

8

9

STOP-ON-ERROR MODE - Prefix "SE"
LOOP-CONTINUE MODE - Prefix "LC"
NON-VERBOSE MODE - Prefix "NV"
.10 DISPLAY ERROR COUNTERS - Command "DE"
B CLEAR (ZERO) ERROR COUNTERS - Command "ZE"
.12 DISPLAY PASS COUNT - Command "DP"
13 ZERO PASS COUNT - Command "ZP"
UTILITIES
1 WRITE LOOP - Command "WL.size"
2 READ LOOP - Command "RL.size"

MPU TESTS FOR THE MC68020 - Command "MPU"
General Description
Hardware Configuration
MPU A - Register Test
MPU B - Instruction Test
MPU C - Address Mode Test
MPU D - Exception Processing Test
MC68020 ON-CHIP CACHE TESTS - Command "CA20"
General Description
Hardware Configuration
CA20 F - Basic Caching
CA20 G - Unlike Function Codes
CA20 H - Disable Test
CA20 I - Clear Test
MEMORY TESTS - Command "MT"
General Description
Hardware Configuration
MT A - Set Function Code
MT B - Set Start Address
MT C - Set Stop Address
MT D - Set Bus Data Width
MT March Address Test
MT F - Walk a Bit Test
MT G - Refresh Test
0 MT H - Random Byte Test

OO WM =

— 0 ¢ TP WN -

—HWEONO OIS WMN -
oM mO o
1

169

@ MOTOROLA DISK COMMUNICATION STATUS CODES

THIS PAGE INTENTIONALLY LEFT BLANK.

168

133Bug DIAGNOSTIC FIRMWARE GUIDE
@ MOTOROLA

G.1 SCOPE

This diagnostic guide contains information about the operation and use of the
MVME133 Diagnostic Firmware Package, hereafter referred to as "the
diagnostics". Paragraphs G.3 and G.4 give the user guidance in setting up the
system and invoking the various utilities and tests. G.5 describes utilities
available to the user. G.6 through G.13 are guides to using each test.

G.2 OVERVIEW OF DIAGNOSTIC FIRMWARE

The MVME133 diagnostic firmware package consists of two 64K x 8 EPROMs which
are plugged into the MVME133. These two EPROMs (which also contain 133Bug)
contain a complete diagnostic monitor along with a battery of utilities and
tests for exercise, test, and debug of hardware in the MVME133 environment.

The diagnostics are menu-driven for ease of use. The Help (HE) command
(explained fully in paragraph G.4.3) displays a menu of all available
diagnostic functions (i.e., the tests and utilities). Several tests have a
subtest menu which may be called using the HE command. In addition, some
utilities have subfunctions, and as such have subfunction menus.

G.3 SYSTEM START-UP

For 133Bug diagnostics to operate properly, follow this setup procedure.

CAUTION
INSERTING/REMOVING MODULES WITH POWER APPLIED COULD DAMAGE COMPONENTS.

1. Turn all equipment power OFF. Refer to the MVMEL33 User’s Manual and
configure the header Jjumpers on the module as required for the user’s
particular application. The only jumper configurations specifically
dictated by 133Bug are those on J6. J6 must have jumpers between pins 1
and 3, and between pins 4 and 6. This sets EPROM sockets XU31 and XU46

for 64K x 8 chips in bank 1. (This may NOT be the factory configuration
of the MVME133 as shipped.)

2 Refer to the MVME133 User’s Manual and configure the Module Status
Register (MSR) as required for the user’s particular application. J15
sets or resets bits 0 through 4 of the MSR, and Jl enables or disables the
system controller functions of the MVME133 thus allowing the SYSCON bit of
the MSR to reflect system controller status (details in Appendix A).

3. Be sure that the two 64K x 8 133Bug diagnostic EPROMs are installed in
sockets XU31 (odd bytes, odd BXX label) and XU46 (even bytes, even BXX
label) on the MVME133 module. BE SURE CHIP ORIENTATION IS CORRECT, WITH
PIN 1 LINED UP WITH THE MARKS ON THE SILKSCREEN ON THE PC BOARD.

171

@ MOTOROLA

WM =

WM -

133Bug DIAGNOSTIC FIRMWARE GUIDE

TABLE OF CONTENTS (cont’d)

MT I - Program Test
MT J - TAS Test
Description of Memory Error Display Format
REAL-TIME CLOCK TEST - Command "RTC"
Description
Command Input
Response/Messages
BUS ERROR TEST - Command "BERR"
Description
Command Input
Response/Messages
FLOATING POINT COPROCESSOR (MC68881) TEST - Command "EPC"
Description
Command Input
Response/Messages
MFP (MC68901) FUNCTIONALITY TEST - Command "MFP"
Description
Command Input
Response/Messages
28530 FUNCTIONALITY TEST - Command "SCC"
Description
Command Input
Response/Messages

170

133Bug DIAGNOSTIC FIRMWARE GUIDE
(::) MOTOROLA

. ’CPU Register test failed’
... ’CPU Instruction test failed’
.. "ROM test failed’
. 'RAM test failed’
.. ’CPU Addressing Modes test failed’
... "Exception Processing test failed’
. 768901 Register test failed’

Control remains with the confidence test and the monitor does not come up.

The user may force the monitor to come up by pressing the ABORT switch on
the MVME133 front panel.

G.4 DIAGNOSTIC MONITOR

The tests described herein are called via a common diagnostic monitor,
hereafter called "monitor". This monitor is command-Tine driven and provides
input/output facilities, command parsing, error reporting, interrupt handling,
and a multi-Tevel directory.

G.4.1 Monitor Start-Up !

When the monitor is first brought up, following power-up or pushbutton switch
RESET, the following is displayed on the diagnostic video display terminal
(debug port terminal): E
|

Copyright Motorola Inc. 1986, At Rights Reserved
VME133 Monitor/Debugger Version 1.0 - 5/1/86

COLD Start
133Bug>

At the prompt, enter "SD" to switch to the diagnostics directory. Switch
Directories (SD) is explained in detail in paragraph G.4.5. The prompt should
now read "133Diag>".

G.4.2 Command Entry and Directories

Entry of commands is made when the prompt "133Diag>" appears. The name
(mnemonic) for the command 1is entered before pressing the carriage return
<CR>. Multiple commands may be entered. If a command expects parameters and
another command is to follow it, separate the two with an exclamation point
"I". For instance, to invoke the command "MT B" after the command "MT A", the
command Tine would read "MT A ! MT B". Spaces are not required but are shown
here for Tegibility. Several commands may be combined on one line.

173

U
) moToroLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

4. Refer to the set-up procedure for the user’s particular chassis or system
for details concerning the installation of the MVME133.

5. Connect the terminal which is to be used as the 133Bug system console to
the debug port connector J14 (DB25 connector) on the MVMEI33 front panel.
Set up the terminal as follows:

eight bits per character

one stop bit per character

parity disabled (no parity)

9600 baud to agree with default baud rate of MVMEI33 debug port at
power-up.

In order for high-baud rate serial communication between 133Bug and the
terminal to work, the terminal must do some handshaking. If the terminal
being used does not do hardware handshaking via the CTS line (EXORterms do
hardware handshaking), then it must do XON/XOFF handshaking. If the user
gets garbled messages and missing characters, then he should check the
terminal to make sure XON/XOFF handshaking is enabled.

6. If it 1is desired to connect up some device(s) (such as a host computer
system or a serial printer) to port A (RS-485/RS-422) and/or port B (RS-
232C) on the MVME133 rear connector J2, connect the appropriate cables and
configure the port(s) as detailed in the MVMEL33 User’s Manual. After
power-up, these ports can be reconfigured by programming the 78530 chip on
the MVME133, or by using the Port Format (PF) command of the 133Bug
debugger.

7. Power up the system. 133Bug executes some self-checks and displays the
debugger prompt ("133Bug>"). (Refer to paragraph G.4.1.)

When power is applied to the MVME133, bit 13 location $F80000 (Module
Status Register = MSR) is set to zero indicating that power was just
applied. (Refer to Appendix A for a complete description of the MSR.)
This bit 1is tested within the "Reset" logic path to see if the power-up
confidence test needs to be executed. Location $FB0000 (Real-Time Clock =
RTC) s read, thereby setting the power-up indicator to a one thus
preventing any future power-up confidence test execution.

If the power-up confidence test 1is successful and no failures are
detected, the firmware monitor comes up normally, with the FAIL LED off.

If the confidence test fails, the test is aborted when the first fault is

encountered and the FAIL LED vremains on. If possible, one of the
following messages is displayed:

172

@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

G.4.6 LOOP-ON-ERROR MODE - Prefix "LE"

Occasionally, when an oscilloscope or logic analyzer is in use, it becomes
desirable to endlessly repeat a test at the point where an error is detected.
"LE" accomplishes that for most of the tests. To invoke "LE", enter it before
the test that is to run in "loop-on-error" mode.

G.4.7 STOP-ON-ERROR MODE - Prefix "SE"

It is sometimes desirable to stop a test or series of tests at the point where
an error is detected. "SE" accomplishes that for most of the tests. To
invoke "SE", enter it before the test or series of tests that is to run in
"stop-on-error" mode.

G.4.8 LOOP-CONTINUE MODE - Prefix "LC"

To endlessly repeat a test or series of tests, the prefix "LC" is entered.
This Toop includes everything on the command line. To break the loop, press
the BREAK key on the diagnostic video display terminal. Certain tests disable
the BREAK key interrupt, so pressing the ABORT or RESET switches on the
MVME133 front panel may become necessary. %

G.4.9 NON-VERBOSE MODE - Prefix "NV"

Upon Detecting an error, the tests included for the MVMEI33 display a
substantial amount of data. To avoid the necessity of watching the scrolling
display, a mode 1is provided that suppresses all messages except "PASSED" or
"FAILED". This mode is called "non-verbose" and is invoked prior to calling a
command by entering "NV". "NV ST MT" would cause the monitor to run the MT

self-test, but show only the names of the subtests and the results
(pass/fail).

G.4.10 DISPLAY ERROR COUNTERS - Command "DE"

Each test or command in the diagnostic monitor has an individual error
counter. As errors are encountered in a particular test, that error counter
is incremented. If one were to run a self-test or just a series of tests, the
results could be broken down as to which tests passed by examining the error
counters. "DE" displays the results of a particular test if the name of that
test follows "DE". Only nonzero values are displayed.

G.4.11 CLEAR (ZERO) ERROR COUNTERS - Command "ZE"

The error counters originally come up with the value of zero, but it is
occasionally desirable to reset them to zero at a later time. This command
resets all of the error counters to =zero. The error counters can be
individually reset by entering the specific test name following the command.
Example: ZE MPU A clears the error counter associated with MPU A.

175

133Bug DIAGNOSTIC FIRMWARE GUIDE
M) moToroLA

Several commands consist of a command name that is Tisted in a main (root)
directory and a subcommand that is 1isted in the directory for that particular
command. In the main directory are commands 1ike "MPU" and "CA20". These
commands are used to refer to a set of lower level commands.

To call up a particular test, enter (on the same line) "MPU A". This command
causes the monitor to find the "MPU" subdirectory, and then to execute the
command "A" from that subdirectory.

Examples:
Single-Level Commands HE Help
DE Display Error Counters
Two-Level Commands MPU MPU Tests for the MC68020
A Register Test
CA20 MC68020 Onchip Cache Tests
G Unlike Function Codes

G.4.3 HELP - Command "HE"

Online documentation has been provided in the form of a Help command (syntax:
"HE [<command name>]"). This command displays a menu of the top level
directory if no parameters are entered, or a menu of each subdirectory if the
name of that subdirectory is entered. (The top level directory lists "(Dir)"
after the name of each command that has a subdirectory.) For example, to
bring up a menu of all the memory tests, enter "HE MT". When a menu is too

long to fit on the screen, it pauses until the operator presses the carriage
return, <CR>, again.

G.4.4 SELF-TEST - Prefix/Command "ST"

The monitor provides an automated test mechanism called self-test. Entering
"ST" before a command causes the monitor to run the tests included in an

internal self-test directory. “ST" without any parameters runs most of the
MVME133 diagnostics.

Each test for that particular command is listed in the paragraph pertaining to
the command (i.e., refer to paragraph G.8 for the MT commands whether or not
they are included in the self-test chain).

G.4.5 SWITCH DIRECTORIES - Command "SD"

To Tleave the diagnostic directory (and disable the diagnostic tests), enter
"SD". At this point, only the commands for 133Bug function. When in the
133Bug directory, the prompt reads "133Bug>". To return to the diagnostic
directory, the command "SD" s entered again. When in the diagnostic
directory, the prompt reads "133Diag>". The purpose of this feature is to
allow the user to access 133Bug without the diagnostics being visible.

174

RE GUIDE
@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE

G.6 MPU TESTS FOR THE MC68020 - Command "MPU"

G.6.1 General Description

This paragraph details the diagnostics provided to test the MC68020 MPU.

TABLE G-1. MC68020 MPU Diagnostic Tests

MONITOR COMMAND TITLE PARAGRAPH
MPU A Register Test G.6.3
MPU B Instruction Test G.6.4
MPU C Address Mode Test G.6.5
MPU D Exception Processing Test G.6.6

The normal procedure for fixing an MC68020 MPU error is to replace the MPU.

G.6.2 Hardware Configuration

The following hardware is required for using these tests:

MVME133 - Module being tested
VME chassis
Video display terminal

177

@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

G.4.12 DISPLAY PASS COUNT - Command "DP"

A count of the number of passes in loop-continue mode is kept by the monitor.
This count is displayed with other information at the conclusion of each pass
(refer to paragraph G.4.8). To display this information without using "LC",
enter "DP".

G.4.13 ZERO PASS COUNT - Command "Zp"

Invoking this command resets the pass counter "DP" (described in paragraph
G.4.12) to zero. This is frequently desirable before typing in a command that
invokes the Tloop-continue mode. Entering this command on the same line as
"LC" results in the pass counter being reset every pass.

G.5 UTILITIES

The monitor is supplemented by several wutilities that are separate and
distinct from the monitor itself and the diagnostics.

G.5.1 WRITE LOOP - Command "WL.size"

The "WL.size" command invokes a streamlined write of specified size to the
specified memory Tocation. This command is intended as a technician aid for
debug once specific fault areas are identified. "The write loop is very short
in execution so that measuring devices such as oscilloscopes may be utilized
in tracking failures. Pressing the BREAK key does not stop the command, but
pressing the ABORT switch or RESET switch does.

Command size must be specified as B for byte, W for word, or L for longword.

The command requires two parameters: target address and data to be written.
The address and data are both hexadecimal values and must be preceded by a 0
if the first digit is other than 0-9, i.e., $FF would be entered as "OFF", To
write $00 out to address $FFFB0030, enter "WL.B OFFFB0030 00". Omission of
either or both parameters causes prompting for the missing values.

G.5.2 READ LOOP - Command "RL.size"

The "RL.size" command invokes a streamlined read of specified size from the
specified memory location. This command is intended as a technician aid for
debug once specific fault areas are identified. The read loop is very short
in execution so that measuring devices such as oscilloscopes may be utilized
in tracking failures. Pressing the BREAK key does not stop the command, but
pressing the ABORT switch or RESET switch does.

Command size must be specified as B for byte, W for word, or L for Tongword.
The command requires one parameter: target address. The address is a

hexadecimal value. To read from address $FFFB0030, enter "RL.B FFFB0030".
Omission of the parameter causes prompting for the missing value.

176

I
@ MOTOROLA 133Bug DIAGNOSTI; FIRMNARE ‘GU DE

G.6.4 MPU B - Instruction Test MPU B

G.6.4.1 Description. This command tests various data movement, integer
arithmetic, logical, shift and rotate, and bit manipulation instructions of
the MC68020 chip.

G.6.4.2 Command Input.

133Diag>MPU B

G.6.4.3 Response/Messages. After the command has been issued, the following
line is printed:

B MPU Instruction Testvecevcencccens. Running ---------- >
If any part of the test fails, then the display appears as follows.

B MPU Instruction Testucsvinsoomsemenonisins Running ---------- - T FAILED
Test failed routine at $XXXXXXXX

Here $XXXXXXXX is the hexadecimal address of the part of the test that failed.
The user may look in detail at this location in the EPROM to determine exactly
what instruction failed.

If all parts of the test are completed correctly, then the test passes.

B MPU Instruction Testceeivinovrsemimimesaas Running ---------- > PASSED

179

@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

G.6.3 MPU A - Register Test MPU A

G.6.3.1 Description. This command does a thorough test of all the registers
in the MC68020 chip, including checking for bits stuck high or Tow.

G.6.3.2 Command Input.
133Diag>MPU A

G.6.3.3 Response/Messages. After the command has been issued, the following
line is printed:

A MPU Regiatar 1est. .. uin e didde il duss Running ---------- >
If any part of the test fails, then the display appears as follows.

A MPU Register test..........oovvuuuun..... Running ---------- P e s FAILED
Test failed routine at $XXXXXXXX

Here $XXXXXXXX is the hexadecimal address of the part of the test that failed.
The user may look in detail at this location in the EPROM to determine exactly
what register failed.

If all parts of the test are completed correctly, then the test passes.

A MPU Reglster Test. ... covvmivsnsvis von. Running ---------- > PASSED

178

133Bug DIAGNOSTIC FIRMWARE GUIDE
@ MOTOROLA ‘ e

e e ———— e S e A T

G.6.6 MPU D - Exception Processing Test MPU D

G.6.6.1 Description. This command tests many of the exception processing
routines of the MC68020, but not the interrupt auto vectors or any of the
floating-point coprocessor vectors.

-

G.6.6.2 Command Input.

133Diag>MPU D

G.6.6.3 Response/Messages. After the command has been issued, the following
line is printed:

D MPU Exception Processing Test............ Running ---------- >
If any part of the test fails, then the display appears as follows.

D MPU Exception Processing Test............ Running ---------- Bl s 50 FAILED
Test Failed Vector $XX

Here $XX is the hexadecimal exception vector offset, as explained in the
MC68020 User’s Manual, MC68020UM.

However, if the failure involves taking an exception different from that being
tested, the display is:

D MPU Exception Processing Test............ Running ---------- s FAILED (;
Unexpected Exception Taken

If all parts of the test are completed correctly, then the test passes.

D MPU Exception Processing Test............ Running ----- ------> PASSED__

181

@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

G.6.5 MPU C - Address Mode Test MPU C

G.6.5.1 Description. This command tests the various addressing modes of the
MC68020 chip. These include absolute address, address indirect, address
indirect with postincrement, and address indirect with index modes.

G.6.5.2 Command Input.
133Diag>MPU C

G.6.5.3 Response/Messages. After the command has been issued, the following
line is printed:

c MPU Address Mode test.................... Running ---------- >

If any part of the test fails, then the display appears as follows.

C MPU Address Mode test.................... Running ---------- R e FAILED
Here $XXXXXXXX is the hexadecimal address of the part of the test that failed.
The user may look in detail at this location in the EPROM to determine exactly
what address mode failed.

The only other possible error message display is:

C MPU Address Mode test.................... Running ---------- Fos oo s FAILED
Unexpected Bus Error

If all parts of the test are completed correctly, then the test passes.

G MPU Address Mode test.................... Running ---------- > PASSED

180

3 TAGNOSTIC FIRMWARE GUIDE
@ MOTOROLA legkug BIAGD

G.7.3 CA20 F - Basic Caching Test CA20 F

G.7.3.1 Description. This command tests the basic caching function of the
MC68020 microprocessor. The test caches a program segment that resides in
RAM, freezes the cache, changes the program segment in RAM, then reruns the
program segment. If the cache is functioning correctly, the cached
instructions are executed. Failure is detected if the MC68020 executes the
instructions that reside in RAM; any cache misses cause an error.

The process is first attempted in supervisor mode for both the initial pass
through the program segment and the second pass. It is then repeated, using
user mode for the initial pass and the second pass. A bit is included in each
cache entry for distinguishing between supervisor and user mode. If this bit
is stuck or inaccessible, the cache misses during one of these two tests.

G.7.3.2 Command Input.
133Diag>CA20 F

G.7.3.3 Response/Messages. After the command has been issued, the following
line is printed:

F CA20 Basic cachifg sesssmewswsswsmomnsmss Running ---------- >

If there are any cache misses during the second pass through the program
segment, then the test fails and the display appears as follows.

F CA20 Basic €aching .«.ic.ovainoiviadin.a Running ---------- S e FAILED
2 CACHE MISSES!

CACHED IN SUPY MODE, RERAN IN SUPY MODE

If there are no cache misses during the second pass, then the test passes.

3 EAZ0 ZBas e Caehing "o o i S Sl sadia sllss Running ---------- > PASSED

183

WARE GUID
@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

G.7 MC68020 ONCHIP CACHE TESTS - Command "CA20"

G.7.1 General Description

This paragraph details the diagnostics provided to test the MC68020 cache.

TABLE G-2. MC68020 Cache Diagnostic Tests

MONITOR COMMAND TITLE PARAGRAPH
CA20 F Basic Caching G.7.3
CA20 G Unlike Function Codes G.7.4
CA20 H Disable Test G.7.5
CA20 I Clear Test G.7.6

The normal procedure for fixing an MC68020 cache error is to replace the MPU.

G.7.2 Hardware Configuration

The following hardware is required for using these tests:
MVMEI33 - Module being tested

VME chassis
Video display terminal.

182

D
@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

G.7.5 CA20 H - Disable Test CA20 H

G.7.5.1 Description. In the MC68020 Cache Control Register (CACR) a control
bit is provided to enable the cache. When this bit is clear, the cache should
never hit, regardless of whether the address and function codes match a tag.
To test this mechanism, a program segment is cached from RAM. The cache is
frozen to preserve its contents, then the enable bit is cleared. The program
segment in RAM is then changed and rerun. There should be no cache hits with
the enable bit clear. Failure is declared if the cache does hit.

G.7.5.2 Command Input.

133Diag>CA20 H G —— e .

G.7.5.3 Response/Messages. After the command has been issued, the following

Tine is printed:
H CA20 Disable test cviwevensrwemannioinonons Running ---------- >

If there are any cache hits during ihe second pass through the program
segment, then the test fails and the display appears as folTows.

H CA20 Disable testvviiniiiiniiann, Running ---------- B e FAILED
1 CACHE HIT!

CACHED IN SUPY MODE, RERAN IN SUPY MODE

If there are no cache hits during the second pass, then the test passes.

H CA2D: Disable test sinsmsmpswsmpenasonsimns Running ---------- > PASSED

185

TRMWARE GUIDE
) mororoLA 133Bug DIAGNOSTIC FIRMWARE GUI

G.7.4 CA20 G - Unlike Function Codes Test CA20 G

G.7.4.1 Description. This command tests the ability of the onchip cache to
recognize function codes. Bit 2 of the function code is included in the tag
for each entry. This provides a distinction between supervisor and user modes
for the cached instructions. To test this mechanism, a program segment that
resides in RAM 1is cached in supervisor mode. The cache is frozen, then the
program segment in RAM is changed. When the program segment is executed a
second time in user mode, there should be no cache hits due to the different

function codes. Failure 1is detected if the MC68020 executes the cached
instructions.

After the program segment has been cached in supervisor mode and rerun in user
mode, the process is repeated, caching in user mode and rerunning in
supervisor mode. Again, the cache should miss during the second pass through
the program segment.

G.7.4.2 Command Input.
133Diag>CA20 G

G.7.4.3 Response/Messages. After the command has been issued, the following
line is printed:

G CA20 Unlike fn. codes Running ---------- >

If there are any cache hits during the second pass through the program
segment, then the test fails and the display appears as follows.

G CA20 Unlike fn. codesc.ooonn. .. Running ---------- > TR TN FAILED
5 CACHE HITS!

CACHED IN SUPY MODE, RERAN IN USER MODE

If there are no cache hits during the second pass, then the test passes.

G CA20 UnTlike fn. codesoouv.... Running ---------- > PASSED

184

133Bug DIAGNOSTIC FIRMWARE GUIDE
@ MOTOROLA

G.8 MEMORY TESTS - Command "MT"

G.8.1 General Description

This set of tests accesses random access memory (read/write) that may or may
not reside on the MVME133 module. Default 1is the onboard RAM. To test
offboard RAM, change Start and Stop Addresses per MT B and MT C as described
following. ‘

e . ——

OTE
If one or more memory tests are attempted at an
address where there is no memory, a bus error
message appears, giving the details of the problem.

TABLE G-3. Memory Diagnostic Tests

MONITOR COMMAND TITLE PARAGRAPH
MT A~ S8t Finction Code 6.8.3
MT B © 7 T UsétTStart Address i G.8.4
MTrcTTT) Set Stop Address G.8.5
MT D Set Bus Data Width G.8.6
MT E March Address Test G.8.7
MT F Walk a Bit Test G.8.8
MT G Refresh Test G.8.9
MT H Random Byte Test G.8.10
MT I Program Test G.8.11
MT J TAS Test G.8.12
G.8.2 Hardware Configuration
The following hardware is required to perform these tests.
MVME133 - Module being tested
VME chassis
Video display terminal ’
Optional offboard memory.

187

E
@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUID

G.7.6 CA20 I - Clear Test CA20 1

G.7.6.1 Description. A control bit is included in the MC68020 CACR to clear
the cache. Writing a one to this bit invalidates every entry in the onchip
cache. To test this function, a program segment in RAM is cached and then
frozen there to preserve it long enough to activate the cache clear control
bit. The program segment in RAM is then modified and rerun with the cache
enabled. If the cache hits, the clear is incomplete and failure is declared.

G.7.6.2 Command Input.
133Diag>CA20 1

G.7:6.3 Response/Messages. After the command has been issued, the following
line is printed:

I CABH CIBAF TOEE .o mrs v s disn it oo o wninne Running ---------- >

If there are any cache hits during the second pass through the program
segment, then the test fails and the display appears as follows.

I CA20 Clear test

......................... Running ---------->_ ... FAILED
58 CACHE HITS!
CACHED IN SUPY MODE, RERAN IN SUPY MODE
If there are no cache hits during the second pass, then the test passes.
I CA20 Clear testooovvvuininnn... Running ---------- > PASSED

186

DIAGNOSTIC FIRMWARE GUIDE
@ MOTOROLA 133Bug DIA

G.8.4 MT B - Set Start Address MT B

G.8.4.1 Description. This command allows the user to select the start
address used by all of the memory tests. For a system with one MVME133, it is
suggested that address $00004000 be used. For a system with two MVME133’s,
the address $00008000 should be used. Other addresses may be used, but
extreme caution should be used when attempting to test memory below these
addresses.

G.8.4.2 Command Input.

133Diag>MT B [<new value>] <CR>

G.8.4.3 Response/Messages. If the user supplied the optional new value, then
the display appears as follows:

133Diag>MT B [<new value>] <CR>
Start Addr.=<new value>
133Diag>

If a new value was not specified by the user, then the old value is displayed
and the user is allowed to enter a new value.

NOTE
The default is Start Addr.=00003000, which is for onboard RAM.

133Diag>MT_B <CR>

Start Addr.=<current value> ?[<new value>] <CR>
Start Addr.=<new value>
133Diag>

This command may be used to display the current value without changing it by
pressing a carriage return <CR> without entering the new value.

133Diag>MT_B <CR>

Start Addr.=<current value> ?<CR>
Start Addr.=<current value>
133Diag>

NOTE

If a new value 1is specified, it is truncated to a Tongword
boundary and, if greater than the value of the stop address,

replaces the stop address. The start address is never allowed

to be higher in memory than the stop address. These changes
occur before another command is processed by the monitor.

189

FIRMWARE GUID
@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE E

G.8.3 MT A - Set Function Code MT A

G.8.3.1 Description. This command allows the user to select the function
code used in most of the memory tests. The exceptions to this are "Program
Test" and "TAS Test".

G.8.3.2 Command Input.
133Diag>MT A [<new value>] <CR>

G.8.3.3 Response/Messages. If the user supplied the optional new value, then
the display appears as follows:

133Diag>MT_A [<new value>] <CR>
Function Code=<new value>
133Diag>

If a new value was not specified by the user, then the old value is displayed
and the user is allowed to enter a new value.

NOTE
The default is Function Code=5, which is for onboard RAM.
133Diag>MT_A <CR>
Function Code=<current value> ?[<new value>] <CR>

Function Code=<new value>
133Diag>

This command may be used to display the current value without changing it by
pressing a carriage return <CR> without entering the new value.

133Diag>MT_A <CR>

Function Code=<current value> ?<CR>
Function Code=<current value>
133Diag>

188

—~

STL MWARE GUIDE
@ MOTOROLA 133Bug DIAGNOSTIC FIR

G.8.6 MT D - Set Bus Data Width MT D

G.8.6.1 Description. This command is used to select either 16- or 32-bit bus
data accesses during the MVME133 MT memory tests. The width is selected by
entering zero for 16 bits or one for 32 bits.

G.8.6.2 Command Input.

133Diag>MT D [<new value: 0 for 16, 1 for 32>] <CR>

G.8.6.3 Response/Messages. If the user supplied the optional new value, then
the display appears as follows:

133Diag>MT D [<new value>] <CR>
Bus Width (32=1/16=0) =<new value>
133Diag>

If a new value was not specified by the user, then the old value is displayed
and the user is allowed to enter a new value.

NOTE

The default value is Bus Width (32=1/16=0) =0, which
is for onboard RAM.

133Diag>MT_D <CR>

Bus Width (32=1/16=0) =<current value> ?[<new value>] <CR>
Bus Width (32=1/16=0) =<new value>
133Diag>

This command may be used to display the current value without changing it by
pressing a carriage return <CR> without entering the new value.

133Diag>MT D <CR>
Bus Width (32=1/16=0)
Bus Width (32=1/16=0)
133Diag>

=<current value> ?<CR>
=<current value>

191

@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

G.8.5 MT C - Set Stop Address MT C

G.8.5.1 Description. This command allows the user to select the stop address
used by all of the memory tests.

G.8.5.2 Command Input.
133Diag>MT C [<new value>] <CR>

G.8.5.3 Response/Messages. If the user supplied the optional new value, then
the display appears as follows:

133Diag>MT_C [<new value>] <CR>
Stop Addr.=<new value>
133Diag>

If a new value was not specified by the user, then the old value is displayed
and the user is allowed to enter a new value.

NOTE

The default is Stop Addr.=000FFFFC, which is
for onboard RAM.

133Diag>MT_C <CR>

Stop Addr.=<current value> ?[<new value>] <CR>
Stop Addr.=<new value>

133Diag>

This command may be used to display the current value without changing it by
pressing a carriage return <CR> without entering the new value.

133Diag>MT_C <CR>

Start Addr.=<current value> ?2<CR>
Start Addr.=<current value>
133Diag>

NOTE
If a new value is specified, it is truncated to a longword
boundary and, if less than the value of the start address, is
replaced by the start address. The stop address is never
allowed to be Tower in memory than the start address. These
changes occur before another command is processed by the
monitor.

190

133Bug DIAGNOSTIC FIRMWARE GUIDE
@ MOTOROLA

G.8.8 MT F - Walk a Bit Test MT F

G.8.8.1 Description. This command performs a "walking bit" test from "Start
Address" to "Stop Address".

The walking bit test has been implemented in the following manner:

Step 1. For each memory location, do the following:
Write out a 32-bit value with only the Tower bit set.

Read it back and verify that the value written equals the one
read. Report any errors.

Shift the 32-bit value to move the bit up one position.

Repeat the procedure (write, read, and verify) for all 32-bit
positions.

G.8.8.2 Command Input.
133Diag>MT F <CR>

G.8.8.3 Response/Messages. After the command is entered, the display should
appear as follows:

F MT Walk a bit Test .ccuooecccnsdiinoascions Running ---------- >

If an error is encountered, then the memory Tlocation and other related
information are displayed (refer to paragraph G.8.13).

F MT Walk & bit Test sissewes swsmusnsmswmes Running ---------- B e FAILED

(error-related information)

If no errors are encountered, then the display appears as follows:

F MT Walk a bit Test ..ot Running ---------- > PASSED

193

133Bug DIAGNOSTIC FIRMWARE GUIDE
@ MOTOROLA

G.8.7 MT E - March Address Test MT E

G.8.7.1 Description. This command performs a "march address" test from
"Start Address" to "Stop Address".

The march address test has been implemented in the following manner:

Step 1. A1l memory Tocations from Start Address up to Stop Address are
cleared to 0.

Step 2. Beginning at Stop Address and proceeding downward to Start Address,
each memory location is checked for bits that did not clear and then
the contents are changed to all F’s (all the bits are set). This
process reveals address lines that are stuck high.

Step 3. Beginning at Start Address and proceeding upward to Stop Address,
each memory Tlocation is checked for bits that did not set and then
the memory location 1is again cleared to 0. This process reveals
address lines that are stuck Tow.

G.8.7.2 Command Input.
133Diag>MT E <CR>

G.8.7.3 Response/Messages. After the command is entered, the display should
appear as follows:

E MT March Addr: Testa. scdeese i s s s w it Running ---------- >

If an error is encountered, then the memory Tlocation and other related
information are displayed (refer to paragraph G.8.13).

E MT March Addr. Test....ccvvvvvnennn... Running ---------- p I FAILED

(error-related information)

If no errors are encountered, then the display appears as follows:

E MT Mareh Addr: TBEL.:ssmesssnsmssmsmsmme Running ---------- > PASSED

192

o~

C WARE GUIDE
@ MOTOROLA 133Bug DIAGNOSTIC FIRM

G.8.10 MT H - Random Byte Test MT H

G.8.10.1 Description. This command performs a "random byte" test from "Start
Address" to "Stop Address".

The random byte test has been implemented in the following manner:
Step 1. A register is loaded with the value $ECA86420.

Step 2. For each memory location:

Copy the contents of the register to the memory location, one
byte at a time.

Add $02468ACE to the contents of the register.
Proceed to next memory location.

Step 3. Reload $ECA86420 into the register.

Step 4. For each memory location:

Compare the contents of the memory to the register to verify
that the contents are good, one byte at a time.

Add $02468ACE to the contents of the register.

Proceed to next memory location.

G.8.10.2 Command Input.
133Diag>MT H <CR>

G.8.10.3 Response/Messages. After the command is entered, the display should
appear as follows:

H MT Random Byte Test...uwies v wore sisiuns & Running ---------- >

If an error occurs, then the memory location and other related information are
displayed (refer to paragraph G.8.13).

H MT Random Byte Test..........coviiininn. Running ---------- b FAILED
(error-related information)

If no errors occur, then the display appears as follows:

H MT Random Byte Testic.issininsswininnsnan Running ---------- > PASSED

195

133Bug DIAGNOSTIC FIRMWARE GUIDE
@ MOTOROLA

G.8.9 MT G - Refresh Test MT G

G.8.9.1 Description. This command performs a vrefresh test from "Start
Address" to "Stop Address".

The refresh test has been implemented in the following manner:

Step 1. For each memory location:
Write out value $FC84B730.
Verify that the Tocation contains $FC84B730.
Proceed to next memory Tocation.

Step 2. Delay for 500 milliseconds (1/2 second).

Step 3. For each memory Tocation:
Verify that the location contains $FC84B730.
Write out the complement of $FC84B730 ($037B48CF) .
Verify that the Tocation contains $037B48CF.
Proceed to next memory location.

Step 4. Delay for 500 milliseconds.

Step 5. For each memory location:
Verify that the location contains $037B48CF.
Write out value $FC84B730.
Verify that the location contains $FC84B730.
Proceed to next memory location.

G.8.9.2 Command Input.
133Diag>MT G <CR>

G.8.9.3 Response/Messages. After the command is entered, the display should
appear as follows:

G MT Refresh Test.....ceovvurvnennnnnnnnnn. Running ---------- >

If an error is encountered, then the memory location and other related
information are displayed (refer to paragraph G:8.13),

G MT Refresh Test.............oooouinno ... Running ---------- > - FAILED

(error-related information)

If no errors are encountered, then the display appears as follows:

G MT Refresh Test.....oovvevennunninnnn... Running ---------- > PASSED

194

MWARE GUIDE
@ MOTOROLA 133Bug DIAGNOSTIC FIRMWA

G.8.12 MT J - TAS Test ; MT J

G.8.12.1 Description. This command performs a Test and Set (TAS) test from
"Start Address" to "Stop Address".

The test is implemented as follows:

Step 1. For each memory location:
Clear the memory location to O.
"Test And Set" the Tocation (should set upper bit only).
Verify that the location now contains $80.
Proceed to next location (next byte).

G.8.12.2 Command Input.
133Diag>MT J <CR>

G.8.12.3 Response/Messages. After the command is entered, the display should
appear as follows:

J MT TAS TeST: o wswmnmsim s wiv wo viais o ara sbs iions s Running ---------- >

If an error occurs, then the memory location and other related information are
displayed (refer to paragraph G.8.13).

J MT: TAS: TeSt s swmus sre wintss wiels oldinde stsiorisdinde s Running ===« === Diss w o FAILED

(error-related information)

If no errors occur, then the display appears as follows:

J MT TAS TEST . o v o wveivroners & oas 518 805 0 500 018 o0 biie w1 Running ---------- > PASSED

197

uIb
@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

G.8.11 MT I - Program Test MT I

G.8.11.1 Description. This command moves a program segment into RAM and
executes it. The implementation of this is as follows:

Step 1. The program is moved into the RAM, repeating it as many times as
necessary to fill the available RAM (i.e., from "Start Address" to
"Stop Address"-8). only complete segments of the program are moved.
The space remaining from the last program segment copied into the RAM
to "Stop Address"-8 is filled with NOP instructions. Attempting to
run this test without sufficient memory (around 400 bytes) for at
least one complete program segment to be copied causes an error
message to be printed out: "INSUFFICIENT MEMORY™" .

Step 2. The last location, "Stop Address", receives an RTS instruction.

Step 3. Finally, the test performs a JSR to location "Start Address".

Step 4. The program itself performs a wide variety of operations, with the
results frequently checked and a count of the errors maintained.

Errant Tocations are reported in the same fashion as any memory test
failure (refer to paragraph G.8.13).

G.8.11.2 Command Input.
133Diag>MT I <CR>

G.8.11.3 Response/Messages. After the command is entered, the display should
appear as follows:

I MT Progeam Teste e s su. s rsemessssicm. Running ---------- >

If the operator has not allowed enough memory for at least one program segment
to be copied into the target RAM, then the following error message is printed.
To avoid this, make sure that the Stop Address is at least 388 bytes
($00000184) greater than the Start Address.

I MT Program Test.......................... Running ---------. >
Insufficient Memory
PASSED

If the program (in RAM) detects any errors, then the location of the error and
other information is displayed (refer to paragraph G.8.13).

I MT Program Te8Ru.c. « .o s wiasmss i n Running ---------. H s FAILED
(error-related information)

If no errors occur, then the display appears as follows:

I ML PPBOFEN TORE- urci oot ss i e s aie Running ---------. > PASSED

STIC FIRMWARE GUIDE
(M) moToroLA 133Bug DIAGNO R

G.9 REAL-TIME CLOCK TEST - Command "RTC" RTC

G.9.1 Description

This command tests the MM58274A Real-Time Clock (RTC). The RTC is started
and, after five seconds, provides a level 4 interrupt to the MC68020 MPU via
the onboard interrupt handler. The RTC is then checked for roll-over.

G.9.2 Command Input
133Diag>RTC

G.9.3 Response/Messages

After the command has been issued, the following Tine is printed:
RIC Real Time Clock Test.s:esessvinseusmanons Running ---------- >
If there is no interrupt, then the display appears as follows.

RTC Real Time Clock Test......sesssmsnssnssion Running ---------- PRgn ik FAILED
RTC did not interrupt

If an interrupt is generated, but it does not reset PWRUP* (bit 13 of the
onboard Module Status Register = MSR), then the display appears as follows.
(Refer to Appendix A for details of the MSR.)

RTC: .Real.Time: Clock: Test .o wan vutviis saiioniocn o¥ Running ---------- s AT, FAILED
Interrupt flag not set in Status Reg.

If any digit is wrong in roll-over, then the test fails and the appropriate
error message appears as one of the following:

Unit Sec. greater than 1 Unit Days <> 1

Tens Sec. <> 0 Tens Days <> 0

Unit Min. <> 0 Unit Month <> 1

Tens Min. <> 0 Tens Month <> 0

Unit Hours <> 0 Unit Years <> 0

Tens Hours <> 0 Tens Years <> 0
Day not 1

If a bus error occurs, the error message is:

Unexpected Bus Error

If both parts of the test are completed correctly, then the test passes.

RIC Real Time Clock Testc.sisismimss s minsnsns Running ---------- > PASSED

199

@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

G.8.13 Description of Memory Error Display Format

This paragraph is included to describe the format used to display errors
during memory test E through J.

The error reporting code is designed to conform to two rules:

1. The first time an error occurs, headings are printed out prior to the
printing of the values.

2. Upon 20 memory errors, the printing of error messages ceases for the
remainder of the test.

The following is an example of the display format:

FC TEST ADDR 10987654321098765432109876543210 EXPECTED READ
5 00010000 ------------m=m---==--- B i 00000100 00000000
5 00010004 ------------------- SEE R X---- FFFFEFFF FFFFFFEF

Each 1line displayed consists of five items: function code, test address,
graphic bit report, expected data, and read data. The test address, expected
data, and read data are displayed in hexadecimal. The graphic bit report

shows a letter "X" at each errant bit position and a dash "-" at each good bit
position.

The heading used for the graphic bit report is intended to make the bit
position easy to determine. Each numeral in the heading is the one’s digit of
the bit position. For example, the "leftmost" bad bit at test address $10004
has the numeral "2" over it. Because this is the second "2" from the right,
the bit position is read "12" in decimal.

198

133Bug DIAGNOSTIC FIRMWARE GUIDE
@ MOTOROLA

G.11 FLOATING POINT COPROCESSOR (MC68881) TEST - Command "FPC" FPC

G.11.1 Description

This command tests the functions of the FPC, including all the types of FMOVE,
FMOVEM, FSAVE, and FRESTORE instructions; and tests various arithmetic
instructions that set and clear the bits of the FPC Status Register (FPSR).
G.11.2 Command Input

133Diag>FPC

G.11.3 Response/Messages
After the command has been issued, the following Tine is printed:
FPC Floating Pnt. Coprocessor Test........... Running ---------- >

If there is no FPC on the MVME133 module, then the test fails and the display
appears as follows.

FPC Floating Pnt. Coprocessor Test........... Running ---------- s s FAILED
No FPC detected

If any part of the test fails, then the display appears as follows.

FPC Floating Pnt. Coprocessor Test........... Running ---------- > . FAILED (;
Test failed FPC routine at XXXXXXXX

Here XXXXXXXX is the hexadecimal address of the part of the test that failed.

The user may look in detail at this location in the EPROM to determine exactly
what function failed.

If any part of the test is halted by an unplanned interrupt, then the display
appears as follows.

FPC Floating Pnt. Coprocessor Test........... Running ---------- s FAILED
Unexpected interrupt

If all parts of the test are completed correctly, then the test passes.

FPC Floating Pnt. Coprocessor Test........... Running ---------- > PASSED

201

133Bug DIAGNOSTIC FIRMWARE GUIDE
@ MOTOROLA

G.10 BUS ERROR TEST - Command "BERR" BERR

G.10.1 Description

This command tests for local bus time-out and global bus time-out bus error
conditions, including the following:

no bus error by reading from ROM
Tocal bus time-out by reading from an undefined FC location
Tocal bus time-out by writing to an undefined FC Tocation

G.10.2 Command Input
133Diag>BERR

G.10.3 Response/Messages
After the command has been issued, the following line is printed:
BERR BBE LRPOE ToBE. - . o vvmemionsmis i momas ms sy Running ---------- >

If a bus error occurs in the first part of the test, then the test fails and
the display appears as follows.

BERR - :Bus: Frror-Jasty s idbiih vnitd ol oo Running ---------- T FAILED
If no bus error occurs in one of the other parts of the test, then the test
fails and the appropriate error message appears as one of the following:

No Bus Error when reading from BAD address space
No Bus Error when writing to BAD address space

If all six parts of the test are completed correctly, then the test passes.

BERR BuS EFFOr Tesb.... .l e vt som ormsn Running ---------- > PASSED

200

133Bug .DIAGNOSTIC FIRMWARE GUIDE
(M) moToROLA

G.13 78530 FUNCTIONALITY TEST - Command "SCC" SCC

G.13.1 Description

This command initializes the 78530 chip for Tx and Rx interrupts, and local
Toopback mode. Using interrupt handlers, it transmits, receives, and verifies
data until all transmitted data is verified or a time-out occurs.

G.13.2 Command Input
133Diag>SCC

G.13.3 Response/Messages
After the command has been issued, the following Tine is printed:
SCC 78530 Functionality Test.csisiwsnsnsinsws Running ---------- >

If any part of the test fails, a time-out eventually occurs, and then the test
fails and the display appears as follows.

SCC 78530 Functionality Test................. Running ---------- B wemas FAILED
Error Code = $XXXX

$XXXX is defined below. Multiple errors are shown as the sum of individual
errors; for example, $0003 means RS-485 transmit and external/status errors.

$0001 RS-485 transmit error error code 0
$0002 RS-485 external/status change error code 1
$0004 RS-485 receive error error code 2
$0008 RS-485 special Rx condition error code 3
$0010 RS-485 transmit time-out error code 4
$0020 RS-485 receive time-out error code 5
$0040 not used error code 6
$0080 not used error code 7
$0100 RS-232C transmit error error code 8
$0200 RS-232C external/status change error code 9
$0400 RS-232C receive error error code 10
$0800 RS-232C special Rx condition error code 11
$1000 RS-232C transmit time-out error code 12
$2000 RS-232C receive time-out error code 13
$4000 not used error code 14
$8000 not used error code 15

The only other possible error message is:
Unexpected Bus Error

If all parts of the test are completed correctly, then the test passes.

SCC 78530 Functionality Test........coovvnnt Running ---------- > PASSED

D
@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

G.12 MFP (MC68901) FUNCTIONALITY TEST - Command "MFP" MFP

G.12.1 Description

This command tests three aspects of the MC68901 Multi-Function Peripheral
(MFP). Interrupts are tested in both the serial I/0 (SIO) test and in the
timer test. Second, the SIO test outputs a message through the port using the
SIO interrupts. Finally, the timer test cascades timers D, A, and B for a
watchdog timer output but stops the watchdog from timing out to prevent system
reset. (It may time out if the device fails to interrupt on two separate

channels.)
G.12.2 Command Input
133Diag>MFP

G.12.3 Response/Messages
After the command has been issued, the following line is printed:
MFP MFP Functionality Test................... Running ---------- >

If any part of the test fails , then the display appears as follows.

MEP MFP Fumctionality Testo. i/ ieis, aiduices, Running ---------- BE R FAILED
(error message)

Here, (error message) is one of the following:

Unexpected Bus Error

Unexpected MFP Interrupt(interrupt was disabled)
Tx/Rx Problem; did not get expected interrupt
SIO Receive Error Code $XX

Bad SI0 Xfer: expected $YY,received $7Z

Did not receive interrupt from Timer A

Did not receive interrupt from Timer D

Here $XX, $YY, and $7ZZ are hexadecimal numbers. The receive error code, $XX,
is the contents of the Receiver Status Register, and is described in detail in
the MC68901 data sheet, ADI-984.

If all three parts of the test are completed correctly, then the test passes.

MFP MFP Functionality Test................... Running ---------- > PASSED

202

—~

@ MOTOROLA

INDEX

A option
abort (ABORT)

abort switch (ABORT switch)
absolute address(es)

ACFAIL (ac failure)
address(es)

address format(s)
algorithm
allocate(d, s)
argument (s)

ASCII (American Standard Code for

Information Interchange)

assembler(s)
assembly
assembly language

asynchronous
attach(ed)

baud
baud rate
BCD

BERR
BF

BH (bootstrap operating system and halt)
BI

bias(ed)
binary

binary coded decimal

205

INDEX

76

5, 6, 22, 24, b3, 56-58, 72, 74,
105, 165, 173, 175, 176

5, 6, 22, 53, 5774, 173, 176
16, 45, 47, 80, 81, 118, 180

145, 167

6-8, 14-18, 21-24, 31, 32, 34-36,
38-45, 47-59, 62-65, 71-74, 76,
79, 80, 82, 84-87, 96, 99, 102,
104-106, 109-114, 118, 124-128,
130-132, 136, 137, 139, 144,
147-155, 163-167, 169, 176-180,
185, 187, 189, 190, 192-198, 200,
201

15, 80

45

19, 122, 124, 126, 140, 143, 162
9, 10, 13, 38,:74,:80, 81, 87,
101, 123, 127, 134, 135,:138,
142-144, 147

14, 15, 38, 40, 72, 74, 79, 85,
95, 100, 101, 111, 112,-115; 136,
137, 150, 154, 155

15, 17, 77, 107, 108, 110-119,
152, 153

35, 717, 117

107, 110, 116, 154

85

8, 29;: 33, 37, 60, 82, 98, 150,
165

4, 71, 83, 172

4, 20, 71, 84, 101, 172

121, 136, 137, 139, 143 (see also
binary coded decimal)

170, 200 (see also bus error)
29, 31, 32, 60, 147, 150 (see
also block fill)

9, 10, 19, 29, 33, 60, 65, 69,
157

29, 34, 60, 147, 150 (see also
block initialize)

27

14, 26, 27, 110, 112, 113, 121,
143, 151, 154, 155

121, 143 (see also BCD)

@ MOTOROLA 133Bug DIAGNOSTIC FIRMWARE GUIDE

THIS PAGE INTENTIONALLY LEFT BLANK.

204

@ MOTOROLA

byte(s)

byte address

CA20
cache

carry

chain
channels
character(s)

character set
checksum(s)

clear (zero) error
clock

cold start

cold/warm reset
compatibility
complement

computer

condition codes
conditional assembly
configuration(s)

configuration area
console

control character(s)
control program
control register
controller(s)

controller type
conversion
coprocessor
counter

CPU

207

INDEX

3, 8, 19, 26, 27, 31, 34, 35,40,
41, 43, 45-47, 49, 52, 66, 72,
74, 76, 79, 80, 106, 109, 115,
120, 122, 124-126,--129;.131;-132;
136, 137, 139, 145, 147, 148,
150-155, 157-159, 161, 162, 165,
167, 169, 171, 176, 187, 195-197
151-154

169, 174, 182-186 (see also
cache)

111, 148, 169, 174, 182-186 (see
also CA20)

9

174

202

4-8, 14, 15, 19, 30, 41, 50, 51,
71-73, 76, 83-85, 88, 92, 100,
101, 104, 105, 108, 111, 112,
115, 118, 120, 122-126, 129-131,
133, 140, 147, 150, 151, 154,
155, 172

108, 112

29, 45-47, 60, 71, 72, 104, 105,
121, 144, 147, 151, 152, 154,
155, 166 (see also CS)

169, 175 (see also ZE)

4, 95, 100, 136, 137, 139, 145,
170, 172, 199

80, 149, 173

29, 91

151

151, 194

4, 50, 101, 151, 172

88, 89, 111, 123

108

3, 10, 11, 19, 37, 38, 65, 83,
85, 86, 91, 158, 159, 163, 169,
171, 177, 182, 187

10, 37, 157-159

1, 4, 8, 19, 65, 82, 85, .86, 98,
100, 101, 138, 149, 172

13, 80, 83, 85, 101, 124-126

9; 33, 37

28; 111, 185

5, 8-11; 33, 3738, 62-65;
68-70, 91, 127, 147, 161, 163-166
163-165

1, 8, 29, 48, 60

28, 87, 201

114, 175, 176

5, 39, 88, 148, 173

X mOZ —

@ MOTOROLA

bit(s)

block fill

block initialize
bTlock move

block search
block verify

BM

BO (bootstrap operating system)

boot
bootstrap
boundar(y/ies)

BR

branch and jump addresses
branch instruction(s)
break

breakpoint(s)

breakpoint delete
breakpoint insert

BT (branch conditionally true)
buffer
bug

BUILDS (create S-record from load module)

bus

bus error

bus time-out
BV

206

INDEX

3, 4, 11, 21, 27, 28, 31, 40, 43,
45, 48, 67, 83-85, 88, 89, 96,
99, 102, 109, 111-113, 115, 139,
143, 145, 151, 153, 155, 158-160,
162, 169, 171, 172, 178, 179,
183-187, 191-193, 197-199, 201

60 (see also BF)

60 (see also BI)

35, 60, 116 (see also BM)

40, 60 (see also BS)

60 (see also BV)

29, 35, 36, 52, 60, 116, 147, 150
(see also block move)

9, 10, 19, 29, 33, 37, 38, 60,
62, 65, 69, 157

22, 33, 37, 38, 46, 60, 65

9, 29; 33, 37

31, 40, 43, 67, 115, 144, 150,
189, 190

22, 39, 56, 58, 60 (see also
breakpoint insert)

118

110, 118

6, 41, 50, 71, 73, 86, 104, 149
¥75,:176

1, 5,16, 18,°19,-22,723,°29, 39,
53-60, 89, 91, 96, 99, 102, 103,
142, 149

60 (see also NOBR)

60 (see also BR)

29, 40-42, 60, 147, 150 (see also
block search)

110

13, 79, 123-127, 136, 137, 139
1-11, 13, 18, 17-19, 22-26,
29-36, 38, 39, 41-44, 46-65,
68-79, 81-84, 86, 87, 89-109,
112, 113, 117, 118-121, ‘128, 142,
144, 149, 152, 163, 169, 171-174
153

23-25, 41, 74, 144, 147-149, 166,
169, 170, 180, 187, 191, 199,
200, 202, 203

23-25, 41, 144, 148, 149, 170,
180, 187, 199, 200, 202, 203 (see
also BERR)

74, 147, 166, 200

29, 43, 44, 60, 150 (see also
block verify)

 J

@ MOTOROLA

ECC (error correction code)
echo
EEP

EEPROM (electrically erasable programmable

read-only memory)
EEPROM programming
entering a source line

entering and modifying source programs

ENTRY (a VERSAdos resident Tinker command)

entry point
EPROM

erase

error message(s)

example

exit(s)

failure(s)

fault

fetch

FIFO (first in, first out)
flag(s)

floating point

floating point coprocessor
format

FPG

frame
full duplex

209

INDEX

67, 69, 157, 159, 162, 166

71, 72, 104, 105, 126

29, 52, 60, 150 (see also EEPROM
programming)

29, 52, 60

29, 52, 60 (see also EEP)

117, 118

116

153

38, 50, 72,773,153

3, 6, 45, 171, 178-180, 201

120, 135

1, 71, 77, 104, 117, 147-149,
180, 187, 196, 198-200, 202, 203
1, 5-7, 10, 13, 16-19, 21-24, 31,
32, 34, 35, 38, 39, 43, 44, 46,
47, 49, 50, 52-54, 56, 58, 62-65,
68, 69, 74-79, 83, 84, 86, 87,
89-92, 94-96, 98-102, 109-111,
114-117, 119, 120, 122-126,
128-144, 153-155, 174, 175, 198,
203

41, 53, 57, 76, 77, 83, 84, 92,
101, 116, 117, 122-126, 128-132,
134-144, 150

4, 45, 147, 172, 176, 181,
183-186, 196

b, 25, 1665 172, 176

39, 166

85

25, 26, 135, 148, 160, 165, 199
25, 26, 28, 74,7689, 92, 111,
170, 201

11, 25, 28, 89, 92, 111, 170,
181, 201 (see also FPC and
MC68881)

4, 26, 53, 57, 60, 63, 77, 82-86,
98, 101, 108, 117, 119, 120, 170,
172, 198

25, 26, 89, 148, 149, 170, 201
(see also floating point
coprocessor and MC68881)

22, 24, 25

71, 104

M) moToroLA

crash
cS

current location
cursor

data conversion
data register(s)
date

DC

DE
debug
debugger

default

default configuration
define constant
definition

detach

diagnostic(s)

diagnostic tests
directive(s)
director(y/ies)
disassembled source line
disassembler

disk access

disk controller(s)

disk drive

disk I/0

display error
display pass

display offset
display time and date
DMA (direct memory access)
double bus fault

DP

driver(s)

DU (dump S-records)
dump memory

208

INDEX

19

29, 45-47, 60, 88, 92, 147 (see
also checksum)

112, 118

75 135, 138

1, 29, 48, 60 (see also DC)

20, 21, 26, 28, 87, 89, 111, 112
95, 100, 121, 137-139

29, 35, 30 46; 48; 60, 81, 87,
107-109, 111, 115-117, 119, 124,
125, 131, 132 (see also data
conversion and define constant)
169, 174, 175 (see also display
error)

4, 18, 20, 83, 86, 119, 171-173,
176

1, 3, 4, 6, 11, 13, 15, 16, 19,
22-24, 29, 33, 72, 84, 85, 94,
147, 149, 172

4-6, '8, 10, 13, 19, 31, 32, 40,
42-44, 49, 52, 62-64, 68, 69, 74,
76, 81, 84, 85, 89, 109, 110,
115, 119, 122-126, 128-132, 134,
141, 163, 172, 187-191

10, 85

107, 109, 115, 119 (see also DC)
66, 108, 114

60, 82, 83, 86

1, 11, 23, 94, 148, 149, 169,
171, 173-177, 182

174, 177, 182, 187

107-109, 115-117

1, 11, 29, 60, 94, 169, 173, 174
110

3, 74, 110, 111, 116-118

29, 63, 65

8, 10, 11, 29, 38, 62, 63, 65,
67, 91, 162, 163

10, 127, 163

8-10

169, 174, 175 (see also DE)

169, 176 (see also DP)

81

29, 60, 100 (see also TIME)
165-167

5

169, 176 (see also display pass)
10, 85

19, 29, 49-51, 60, 147, 150

49, 50 (see alsol DU)

<::):v1c711952c>L4\

interlock

interrupt handler

interrupt mask

interrupt vectors

invokes

invoking the assembler/disassembler
I0C

0P
10T

IPL (initial program load)

Jump
Jjumper(s)

keyboard

label(s)

Tatching
latency
LC

LE

LED

LINK (MC68020 instruction)
Tinkage editor

linker(s)

listing file

LO (Toad S-records)

Toad

load module

logic analyzer
lTogical unit
lTogical unit number
Tongword(s)

loop

Toop-continue
Toop-on-error

211

INDEX

83, 150

21, 145, 199

88

21

9y Tls 176

116

9, 10, 29, 60, 62 (see also I/0
control)

9, 19, 29, 60, 62-65, 69, 147
(see also I/0 physical)

8-10, 29, 37, 60, 62, 65-70, 147
(see also I/0 teach)

38

118
3; 6, 52, 171

1, 6, 13, 30

3, 107, 108, 109, 116, 157-159,
171

145

67

169, 175, 176 (see also
loop-continue)

169, 175 (see also loop-on-error)
4, 5, 172

24

153

152, 153

17, 18, 77

19, 29, 60, 71-73, 104, 147

19, 21; 23, 29; 33, 37;:38,:49;
60, 71-73, 122, 126, 130, 140,
141, 143, 144, 153, 157 (see also
LO)

153

175

82, 86, 98, 150

33,375 63y 65, 127

31, 32, 34, 35, 40, 43, 49, 74,
76, 109, 133, 176, 189, 190

6y 175 23; 71; 104; 123, 169,
1755 176

169, 175, 176 (see also LC)
169, 175 (see also LE)

M) moToroLA

G
GD

general description
GN

GO

go direct
go to next instruction
GT (go to temporary breakpoint)

halt (HALT)
handshake
handshaking
hard copy
HE

header

header record(s)
help

host computer

I/0 control

I/0 physical

1/0 port

1/0 teach

IDENT (a VERSAdos resident linker command)
ignore

illegal instruction

index register

initialization

initialize(d)

input

input/output control
installation
instruction(s)

instruction address register
instruction set
interactive

210

INDEX

1, 11, 56,.57; 60;.72, 84, 101,
125 (see also GO)

13, 29, 53, 60, 150 (see also go
direct)

169, 177, 182, 187

22, 29, 54, 55, 60, 150 (see also
go to next instruction)

1, 13, 22, 29, 53, 54, 56-58, 60,
72, 87, 150 (see also G)

29, 53, 60 (see also GD)

29, 54 (see also GN)

22, 29, 54, 58-60, 102, 150

5, 9, 29, 33, 60

85

4, 172

118

1, 29, 60, 61, 82, 94, 169, 171,
174 (see also help)

3, 49, 68, 153, 162, 166, 167,
171

50, 71, 104, 152-154

1, 29, 60, 65, 94, 169, 171, 174
(see also HE)

4, 50, 101, 172

9, 29, 60, 62 (see also IOC)

29, 63 (see also IOP)

129, 140

9, 29, 37, 60 (see also IOT)

152

29, 53, 71, 104

22

16, 115

5, 121, 136, -137

5,7, 8, 23, 29, 33, 34, 38, 53,
56, 58, 63, 86, 91, 96, 99-102,
119, 136, 137, 149, 150, 167

5, 18, 30, 77, 119-126, 136, 137,
141, 145, 153, 170, 178-181,
183-186, 188-197, 199-203

7, 124-126

3; 172

5 8, 9, 11, 19, 22, 25, 28, 35,
39, 54, 56, 57, 60, 74, 77, 87,
96, 97, 99, 107, 108-112,
116-119, 148, 149, 152-154, 169,
173, 177, 179, 183, 184, 196, 201
28, 111

109

65, 83-86, 95, 107

@ MOTOROLA

mnemonics and delimiters
modify register

module status register
monitor (MONITOR)

MPU (microprocessor unit)
MS

MSR

MT

multi-function peripheral
MVMEO50

MVME319

MVME320

MVME360

NOBR

non-verbose

NOP (MC68020 no operation instruction)

NOPA

NOPF
null
NV

object code
OF

offset

offset register(s)
opcode(s)

operand(s)
operand field
operation codes
operation field
option(s)

OR
output modules
overwritten

213

INDEX

110

92

3, 4, 145, 171, 172, 199 (see
also MSR)

4, 5, 7, 45, 132, 169; 171:=177;
182, 187, 189, 190

21, 89, 90, 129, 145, 149, 169,
174, 175, 177-182, 199 (see also
MC68020)

29, 60, 79 (see also memory set)
3, 4, 145, 171, 172, 199 (see
also module status register)
169, 170, 173-175, 187-197 (see
also memory test(s))

4, 11, 20, 145, 202 (see also
MC68901 and MFP)

11, 84, 86

11, 62, 163, 166

11, 63, 91, 163, 165

11, 91, 163, 164, 166, 167

39, 57, 60 (see also breakpoint
delete)

169, 175 (see also NV)

35, 36, 196

60, 82, 150 (see also printer
detach)

60, 83-86 (see also port detach)
164

169, 175 (see also non-verbose)

18, 19, 35

18, 29, 47, 60, 80, 81 (see also
offset registers)

5, 16, 18, 22-24, 29, 47, 49, 60,
67, 69-73, 80, 81, 104, 105, 110,
111, 113, 118, 149, 157-159, 161,
181

5, 15-18, 29, 45, 60, 71, 80, 81,
91, 104, 111, 113 (see also OF)
110, 119, 154 (see also operation
codes)

45, 107-111, 113-115, 118

110, 118

107, 109, 112 (see also opcodes)
109, 110

7, 10, 13, 18, 25, 31, 34, 35,
40-43, 49, 52, 65, 71-74, 76, 77,
84, 104, 105, 116, 118, 147
77,935 113

151

10, 23

M) moToroLA

machine instructions
machine language

macro

main memory

map
mark(s)
mask

mask bi
master

MBLM (VERSAdos build Toad module utility)

MC68020

MC68881

MC68901

MD

memory
memory
memory

memory
memory
memory
memory

memory
memory

menu(s)

t

address(es)
diagnostic
display

error(s)
fill

map
modify

set
test(s)

message(s)

MFP

MM

212

INDEX

46, 47, 60, 76, 81, 84, 85, 88,
106, 111, 120, 136, 137, 139 (see
also memory modify and MM)

107

107

108, 119, 124, 125; 131

52, 145

52, 145

14, 15, 71, 76, 77, 104, 166, 171
24, 40, 42, 66, 87, 89, 141, 157,
158

158, 159

85, 111

153

11, 15, 17, 19, 48, 74, 96, 99,
102, 107, 108, 110, 112, 117,
148, 169, 174, 177-186, 199 (see
also MPU)

11, 25, 28, 89, 92, 107, 170, 201
(see also floating point
coprocessor and FPC)

4, 11, 20, 52, 145, 149, 170, 202
(see also MFP and multi-function
peripheral)

13, 17, 18, 25; 29, 31, 32;:35;
36, 43, 44, 46, 52-54, 56, 58,
60, 73-75, 96, 99, 102, 106, 116,
118, 147 (see also memory
display)

14, 35, 52, 63, 64, 116, 127, 151
187

13, 29, 60, 74, 106, 116 (see
also MD)

170, 198

29, 31

7

18, 29, 60, 76, 80, 116 (see also
M and MM)

29, 60, 79 (see also MS))
169, 174, 187-191, 196, 198 (see
also MT)

171, 174

1, 4, 5, 31, 32, 34, 41-43, 50,
51, 65, 72, 74, 82, 85, 101, 105,
131, 132, 147-150, 172, 175, 198,
202

4, 20, 21, 145, 148, 149, 170,
202 (see also MC68901 and multi-
function peripheral)

18, 19, 25, 29, 36, 60, 76-78,
80, 83, 92, 95, 116, 117, 147
(see also M and memory modify)

(::)n4¢>11:;ac>L/l

radix
RAM

random access
RD

read

read cycle

read loop
read/write heads
read/write memory
real time
real-time
real-time clock

receiver
record(s)

register display
register modify
relative address(es)
remove breakpoints
reset (RESET)

reset switch (RESET switch)
restart

RL.size

RM

ROM
rotate
RS-232C
RS-485
RTC

RTS (MC68020 instruction)

S-record(s)

S-record output format

SCC (serial communications controller)
SCSI (small computer systems interface)
SD

SE

215

INDEX

133

5-7, 34, 147, 148, 173, 183-191,
196

187

22, 23, 25, 29, 60, 87-90, 96,
121, 139 (see also register
display)

21, 63, 64, 121, 123, 125, 126,
128, 139, 140, 193

145

169, 176 (see also RL.size)

67, 161

6, 19

199

99

4, 136, 137, 139, 145, 170, 172,
199 (see also RTC)

123, 149, 202

49-51, 71-73, 104-106, 147,
150-155, 157, 161, 166

29, 60, 87, 89 (see also RD)
29, 60, 80, 92 (see also RM)
16, 17

57

4, 5, 7, 8, 10, 20y 21,-23," 29,
38, 53, 56, 58, 60, 63, 65, 74,
80, 89, 91, 101, 119, 145, 165,
172, 173, 175, 176, 199, 202

5, 74, 91, 176

11, 53, 57

169, 176 (see also read loop)
25, 29, 53, 54, 56, 58, 60, 80,
83, 92, 93, 96, 99, 102 (see also
register modify)

5, 96, 99, 102, 148, 173, 200
179

18, 203

18, 85, 203

4, 121, 138, 139, 148, 149, 170,
172, 199 (see also real-time
clock)

17, 18, 23, 24, 46, 54, 73, 99,
105, 106, 196

18, 19, 29, 49-51, 60, 61, 71-73,
104-106, 147, 151-155

151

170, 203 (see also Z8530)

163

1, 11, 29, 60, 88, 94, .169, 173,
174 (see also switch directories)
169, 175 (see also stop-on-error)

@ MOTOROLA

PA

packet(s)
pad
parameter(s)

parity
PC

pc board
PF

phase
pointer(s)

port(s)

port assignments
port detach
port format

power-up

power-up test
precision
prescaler
printer attach
printer detach
program counter
program entry
program test
prompt(s)

protocol

qualifier
queues

214

INDEX

60, 82, 118, 150 (see printer
attach)

9, 10, 62, 63, 127, 128, 165
166

5, 8-10, 14-16, 19, 31, 38, 43,
45, 63, 65-68, 84, 85, 131, 132,
136, 137, 140, 157-159, 161, 162,
173, 174, 176

4, 34, 84, 147, 172

6, 7, 19, 22-25, 38, 53-59, 72,
73, 87, 89, 90, 93, 96, 97, 99,
102, 103, 108, 111, 113, 114,
131, 132, 139, 171 (see also
program counter)

171

4, 7, 8, 60, 77, 82-86, 98, 101,
117, 150, 172 (see also port
format)

91

6, 7, 24, 38, 120, 124, 130, 132,
139, 144, 147

4-8, 13, 18-20, 29, 49-51, 60,
71-73, 77, 82-86, 98, 101, 104,
105, 117-120, 122-126, 129-132,
134, 140, 141, 145, 150, 172,
173, 202

83

60, 86 (see also NOPF)

4, 60, 77, 82-86, 98, 101, 117,
172 (see also PF)

1, 4, 8, 23, 45, 62, 80, 91, 98,
119, 145, 172, 173

148

26, 27, 74, 76, 89

20, 21

60 (see also PA)

60, 82 (see also NOPA)

6, 111, 113, 114 (see also PC)
116, 117

148, 170, 187, 188, 196

1, 3; 4, 75 II; 1333, 50, bl,
62, 73, 74, 76, 83-86, 94, 95,
98, 149, 150, 172, 173, 174

8, 62, 82, 86

87
5

@ MOTOROLA

T
TA

target system
task
TC

terminal

terminal attach
throughput
TIME

time out
time-of-day clock
time-out
time-sharing

TR (trace bits in status register)

trace

trace on change of control flow
trace to temporary breakpoint
track(s)

transition

transparent mode

trap

truncation
17

U31, U46 (EPROMs for MVME133BUG)
unsigned

update

user commands

user interface

utilit(y/ies)

217

INDEX

22, 25, 29, 60, 72, 96, 97 (see
also trace)

29, 60, 98 (see also terminal
attach)

38

26, 41, 108

22, 29, 60, 61, 99 (see also
trace on change of control flow)
1, 3, 4, 6-8, 13, 18, 19, 29, 30,
33, 49, 60, 71-73, 77, 82, 98,
101, 104, 105, 117, 118, 124-126,
135, 172, 173, 175, 177, 182,

187

29, 60, 98 (see also TA)

165

29, 60, 83, 95, 100 (see also
display time and date)

202

95, 100

20, 25, 166, 167, 203

152

29, 50, 51, 60, 73, 101, 121,
136, 138, 139, 150 (see also
transparent mode)

22, 25, 53-57, 59, 87-90, 93, 96,
97, 99, 102, 103

19, 22, 23, 29, 54-56, 60, 6L,
88, 89, 96, 97, 99, 102 (see also
T)

29, 99 (see also TC)

29, 60, 102 (see also TT)

63, 66-68, 158-162, 167

11

29, 50, 51, 60, 73, 101, 150 (see
also TM)

1, 8-10, 13, 19, 22, 35, 36, 38,
53, 56, 58, 63, 65, 72, 116,
119-127, 129-132, 134-144, 147,
165

31, 43

22, 29, 60, 102, 103 (see also
trace to temporary breakpoint)

52

48, 110, 118, 143

158, 159

1, 13

1

19, 35, 50, 51, 107, 109, 120,
147, 150, 153, 169, 171, 176

@ MOTOROLA

sector(s)

seek

segment

self test

self-test

serial communication
SET

set breakpoints
set time and date
shift

sign(ed)

size, block
size, data

size, EEPROM
size, memory

size, record

size, sector

slave

sockets

software interrupt
source code

source line format
source program coding
source statement(s)
space

ST

stack

stack pointer
startup
status register

stop bit
stop-on-error
string(s)

subroutine
supervisor
switch director(y/ies)

switching
symbol(s)
synchronous
system call
system controller
system reset

216

INDEX

8, 37, 65-70, 74, 127, 157-162,
164-167

160, 166, 167

24, 148, 183-186, 196

1

45, 169, 174, 175 (see also ST)
4, 19, 172

29, 60, 79, 95, 100 (see also set
time and date)

19, 56, 58 (see also BR)

29, 60, 95 (see also SET)

14, 15, 113, 179, 193

26-28, 48, 71, 84, 104, 110-112,
118

8, 66, 68-70, 157, 159, 161

31, 32, 35, 43, 44, 109, 150

52

40-42, 79, 115, 118, 124, 125,
140, 158, 160, 169, 176

157

8, 66, 68-70, 157, 159, 161

85

3, 6; 171

21

11, 116

108

108

108

88, 112, 122, 140, 143, 144
169, 174, 175 (see also
self-test)

6, 7, 19, 22, 24, 25, 38, 72,
122, 123, 125, 126, 128-134, 136,
137, 139, 140, 141

19, 22, 24, 25, 38,87, 88, 1I1
3

3, 4, 6, 28, 88, 89, 96, 99, 102,
111, 139, 145, 149, 171, 172,
199, 201, 202

4, 172

169, 175 (see also SE)

1, 14, 15; 17, 33, 37, 38, 40,
41, 71, 72, 719, 95, 104, -110-113,
115, 120, 124-126, 130-133, 138,
150, 151, 157

17, 54, 55

88, 183, 184

1, 11, 29, 60, 94, 169, 173, 174
(see also SD)

25

13, 305 77, 107, 108, 116
85

9, 10, 23, 109, 116, 119-121
35 5, 11, 91, 145, 171

b, 20, 202

P

SUGGESTION/PROBLEM

REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.

Microcomputer Division

2900 S. Diablo Way
Tempe, Arizona 85282

Attention: Publications Manager
Maildrop DW164

Product: Manual:
COMMENTS:

(For additional comments use other side)
Please Print
Name Title
Company Division
Street Mail Drop
City Phone
State Zip Country

For Additional Motorola Publications
Literature Distribution Center

616 West 24th Street

Tempe, AZ 85282

(602) 994-6561

Motorola Field Service Division/Customer Support

(800) 528-1908
(602) 438-3100

@ MOTOROLA IR

@ MOTOROLA

VBR

VE

vector(s)

vector base register
verify

VERSAdos

VMEbus

VMEbus error

VMEmodule

warm start
winchester disk
WL.size

WRITE (system call)
write Toop

XU24, XU31, XU36, Xu46 (ROM/PROM/EPROM
/EEPROM sockets)

78530
ZE

zero pass
ZP

218

INDEX

22-25, 53-57, 59, 75, 77, 87, 89,
90, 93, 96, 97, 99, 102, 103, 111
(see also vector base register)
29, 61, 104-106, 147 (see also
verify)

5, 19, 21-24, 38, 53, 57, 63,
111, 149, 150, 181

23, 111 (see also VBR)

29, 40, 42, 43, 47, 61, 65,
104-106, 147, 193-195, 197 (see
also VE)

11, 17, 50, 51, 72, 73, 147, 150,
152, 153

5-8, 11, 74, 128, 147, 163, 165,
166

165

11

91, 150
163

169, 176 (see also write loop)
120, 131
169, 175 (see also WL.size)

3, 52, 171

4, 148, 149, 170, 172, 203 (see
also SCC)

169, 175 (see also clear (zero)
error)

169, 176 (see also ZP)

169, 176 (see also zero pass)

0 TP S e =
i
N t
L
J \
’
i
|
i
i
il
1l
"
g 1
. o
% |
: P : IR
K Al
. e
' i

COMMENTS:

e e N SRR @ MOTOROLA R

