(AR MOTOROLA

S’

M68KVPRTL/D1

VERSAdos Pascal Resident
Run-Time Library
User’s Manual

ME8KVPRTL/D1
JULY 1985

VERSAdos PASCAL RESIDENT
RUN-TIME LIBRARY
USER’S MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products
herein to improve reliability, function, or design. Motorola does not assume
any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights
or the rights of others.

RSM68K and VERSAdos are trademarks of Motorola Inc.

First Edition

Copyright 1985 by Motorola Inc.

!
S
.
o
g
£ ¥ J 3 /\
I * - s \‘
L3
r’*
e
'

INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 GENERAL INFORMATION

The VERSAdos Resident Run-Time Library (RRTL) is a collection of routines that
exists as an extension of the VERSAdos operating system. The routines provide
an interface between programs written in PASCAL and the VERSAdos operating
system. The Pascal language runs under VERSAdos and is targeted for VERSAdos.

1.2 CONVENTIONS

The following convehtions are used in the command syntax, examples, and text
in this manual: '

boldface strings A boldface string is a literal, such as a command or
program name, and is to be typed just as it appears.

italic strings An italic string is a "syntactic variable" and is to
be replaced by one of a class of items it represents.

| A vertical bar separating two or more items indicates
‘that a choice is to be made; only one of the items
separated by this symbol should be selected.

[] Square brackets enclose an item that is optional.
The item may appear zero or one time.

[T & 2 s Square brackets followed by an ellipsis (three
dots) enclose an item that is optional/repetitive.
The item may appear zero or more times.

[1] Boldface brackets are réquired characters.
Operator inputs are to be followed by a carriage return. The carriage return
is shown as (CR) only if it is the only input required.
1.3 RELATED DOCUMENTATION
The following publications may provide additional helpful information. If not
shipped with this product, they may be obtained from Motorola’s Literature

Distribution Center, 616 West 24th Street, Tempe, AZ 85282; telephone (602)
994-6561.

INTRODUCTION

MOTOROLA
DOCUMENT TITLE PUBLICATION NUMBER
M68000 Family Real-Time Multitasking Software M68KRMS68K
User’s Manual
M68000 Family Resident Pascal User’s Manual M68KPASC

M68000 Family VERSAdos System Facilities Reference Manual ME8KVSF

VERSAdos Data Management Services and Program Loader RMS68KI0
User’s Manual

Pascal Programming Structures for Motorola TB304/D
Microprocessors

The FORTRAN 77 Reference Manual Revision 2.0 is available from the
manufacturer, ABSOFT Corporation, Royal Oak, Michigan.

FUNCTIONAL DESCRIPTION

CHAPTER 2
FUNCTIONAL DESCRIPTION

2.1 SOFTWARE INTERFACES

Software interfaces are needed to provide the VERSAdos RRTL with access to the
RMS68K and VERSAdos directives. A Tlanguage interface for Pascal is also
required.

2.1.1 RMS68K Interface

RMS68K consists of an inner kernel (or nucleus) that supports the priority-
driven, multitasking environment, and eight resource managers. Each resource
manager consists of data structures and from five to seven RMSE68K directives,
with each directive providing a specific service from the resource manager.
The eight resource managers are:

Event Management Directives

Event Management Directives

Memory Management Directives

Task Management Directives

Time Management Directives

Semaphore Management Directives

Trap Server Management Directives
Exception Monitor Management Directives
Exception Management Directives

— 0O -HhO OO O

Entry to the RMS68K directives is through a TRAP #1 instruction. Directive
calls require a numeric value (directive number) in data register DO. Most
directive calls also require the address of a parameter block in address
register AO. On return from the directive call, data register DO contains
s?atus information. The status register is also set to reflect the contents
of DO.

Appendix A contains a complete Tlisting of the RMS68K directives that are
supported by the VERSAdos Resident Run-Time Library. A full discussion of the
RMS68K directives is provided in the M68000 Family Real-Time Multitasking .
Software User’s Manual. The Channel Management Request (CMR) directive is
documented in the Guide to Writing Device Drivers for VERSAdos.

FUNCTIONAL DESCRIPTION

2.1.2 VERSAdos Directives
The VERSAdos directives are divided into three logical groups:

a. Input/Output Service (10S)
b. File Handling Services (FHS)
¢. Loader Directives

Each group of directives requires a specific interface. In addition, a
software interface for the Error Message Handler (EMH) program is also
required.

2.1.2.1 Input/Output Services Interface. 1/0 operations within VERSAdos are
essentially device-independent. Operations are based on logical properties,
not device characteristics or file formats. Logical Unit Numbers (LUNs) are

assigned to devices and files before 1/0 between programs and files/devices
occurs.

In VERSAdos, all devices and files are treated as files. I/0 is handled by
two modules, 10S and FHS. 10S handles all data transfers, referring to task
or user identification and LUN.

Entry to the IOS directives is through a TRAP #2 instruction. 10S directive
calls require the address of a parameter block in address register AO. The
10S function code is specified in the first word of the parameter block. On
return from the directive call, data register DO reflects the contents of DO.
The PROCEED call is an exception. The DO does not reflect the status of the
function since the function has not yet completed. The parameter block status
byte will reflect the status of the function after the function has completed.

Refer to the VERSAdos Data Management Services and Program Loader User’s
Manual for further information.

2.1.2.2 File Handling Services Interface. As part of I/0, FHS is called into

service when creating disk files and their attributes, associating a LUN with
each device or file.

Entry to the FHS directives is through a TRAP #3 instruction. FHS directive
calls require the address of a parameter block in address register AO. The
FHS function code is specified in the first word of the parameter block. On
return from the directive call, data register DO contains the status returned
from the function. The parameter block status byte contains the function
status. The status register is also set to reflect the contents of DO. Some

directive calls also return data in address register A0 or address registers
A0 and Al.

Refer to the VERSAdos Data Management Services and Program Loader User’s
Manual for further information.

L~

FUNCTIONAL DESCRIPTION

2.1.2.3 Loader Interface. The program loader’s function is to:

Create a new task

[

b. Allocate memory segments for the task based on segment information
found in the Loader Information Block (LIB) of a load file created by
the linkage editor

c. Read the contents of each segment from the 1load file into the
segments allocated

The task created by the loader is in a dormant state following a successful
completion of that load function.

Entry to the Loader directives is through a TRAP #4 instruction. The loader
call . requires the address of a parameter block in address register AO. The
directive number for the Tloader (1) is contained in data register DO. On
return from the directive call, data register DO contains the status returned
from the loader.

The Tloader command 1is thoroughly described in the VERSAdos Data Management
Services and Program Loader User’s Manual.

2.1.2.4 Error Message Handler Interface. The EMH program is a system server
task that provides standard error message displays in response to exception
conditions, relieving the user task of maintaining its own error message list.
The program retrieves the key value of the message to be displayed from the
ERRORMSG.SY file, expanding any embedded sentinels.

Entry to the EMH is through a TRAP #4 instruction. The EMH call requires the
address of a parameter block in address register A0. The directive number for
EMH (2) is contained in data register DO. On return from the directive call,
data register DO contains the status returned from EMH.

Refer to the M68000 VERSAdos System Facilities Reference Manual for a complete
description of the EMH program.

2.1.3 Pascal Interface

The Pascal run-time library consists of routines written in assembly language
that can be declared and called from the Pascal programs as FUNCTIONs. In
every case, the function value returned is the trap status information, the
contents of DO.

The format of a library routine call from a Pascal program is identical to a
regular function or procedure call. Parameters are placed on the top of the
stack beneath the return address, in the order in which they are declared.
The size of the parameters depends on the parameter type. The return value
for a function is below the first parameter on the stack.

Figure 2-1 1illustrates the stack as it would appear on entry to a Tibrary
routine called as a function with three parameters:

FUNCTIONAL DESCRIPTION

Top of stack (A7)----- Dhommem e ee e +
(On Entrance) [Return address |
| (four bytes) |

| 3rd parameter |
| Size depending on type |

| 2nd parameter |
| Size depending on type |

| 1st parameter |
| Size depending on type |
Top of stack (A7)----- P L L L L P TP +
(On Exit) | Function Value |
| Size depending on type |

Register contents on entrance to a library routine are as follows:

A3 = base address of the libraries

A5 = pointer to base of local variable area
A6 = pointer to base of global variable area
A7 = stack pointer

FIGURE 2-1. Stack on Entry to a Library Routine.

The 1library routines are required by the compiler to preserve the value of
registers A3, A5, and A6. They are also responsible for removing from the
stack all parameters passed to it from the calling program.

Refer to the M68000 Family Resident Pascal User’s Manual for a complete
description of the stack entries created by the various types of parameters.

ACCESS TO SYSTEM DIRECTIVES

CHAPTER 3
ACCESS TO SYSTEM DIRECTIVES

3.1 GENERAL INFORMATION

The RRTL routines provide an interface between programs written in Pascal and
the VERSAdos operating system. This chapter describes the means to access the
RMS68K and VERSAdos directives.

Pascal RRTL routines are called from the applications program as functions.
Like any Pascal function, two items must be defined for each RRTL directive
used: the function’s declaration and the function’s calling sequence.

3.2 Pascal DECLARATIONS

Each VERSAdos directive used 1in the Pascal program requires a declaration
statement. The general description of a Pascal declaration for a RRTL
function is as follows:

FUNCTION name (parameter list) : INTEGER; FORWARD;

where:
name
parameter_list

the name of the directive
the 1ist of parameters required by that directive.

3.3 Pascal RRTL CALLING SEQUENCE

A function call for the RRTL functions can be used anywhere a Pascal function
can be wused. The RRTL functions return the directive status as a integer

value. For the directives that do not return status, the returned value of
the function is 0.

The general form of the RRTL calling sequence is as follows:
name(pl,p2,...,pn);

Descriptions of the Pascal declarations and calling sequences for the RRTL

functions are provided in Appendix A.

3.4 CONSTRUCTING A Pascal TASK INCLUDING THE RRTL

The chain file that follows contains the steps necessary to compile and link a

task that includes the RRTLs in a sharable segment with a major portion of the
Pascal Tibrary.

Notice that although the routines RTLINIT, RFINIT, RTRAPS, and PLJSR are
Pascal 1library routines, the routines are not shareable. Therefore, in the
chain file, the routines have been separated from the remainder of the Pascal
library to permit the library to be shared by other tasks.

ACCESS TO SYSTEM DIRECTIVES

=/* COMPILE MASTER PROGRAM
=Pascal \1,\2,\2.LX;Z=100
=Pascal? \2,\2,\2.LS;LZ=100
=/* LINK TOGETHER
=LINK ,\2,\2;MSX

SEG SEG1(R):0,9 $0000

SEG SEG2:15

SEG RRTL(GR):8

IN 9998.RRTL.RTLINIT<INIT>

IN \2

IN 9998.RRTL.RRTLACCS
IN 9998.RRTL.PRTL

IN 9998.RRTL.PLJSR

IN 9998.RRTL.RFINIT
IN 9998.RRTL.RTRAPS
IN 9998.RRTL.RPSCALIB

ATTR P
END
=END
where:
N = the name of the Pascal source file
\2 = the name of the resultant linked file
RTLINIT = a replacement for the Pascal INIT routine for use with the
RRTLs

RTTLACCS = the RRTL access routines
PRTL = the RRTL routines
PLJSR = Pascal library routine that cannot be shared
RFINIT = Pascal library routine that cannot be shared
RTRAPS = Pascal library routine that cannot be shared
RPSCALIB = Pascal library that is shareable

ACCESS TO SYSTEM DIRECTIVES

CHAPTER 4
RRTL SOURCE FILES

4.1 GENERAL INFORMATION

It is helpful to understand the construction of the RRTL’s source files before
attempting to create a VERSAdos run-time library. The RRTL consists of two
major modules: one module which contains the library routines, (PRTL); and
one module which contains the library access routines, (RTLACCS).

The T1ibrary access routines are necessary to overcome the compiler
restrictions and maintain a globally sharable run-time library. Any library
routines that are added to or deleted from the RRTL require changes to both
modules. Appendix B describes the structure of both modules.

The VERSAdos RRTL’s. design enables users to construct three types of
libraries: a full standard library; a subset of the standard library; or a
customized 1library in which new routines have been added or unnecessary
routines deleted. A full standard library is one that contains all VERSAdos
interface routines (grouped by directives: RMS68K, I0S, and FHS/LOADER). A
subset would be a library that contains some combination of these groups. A
customized Tlibrary might contain only those directives a user required, plus
library routines that the user created.

4.2 BUILDING A STANDARD RUN-TIME LIBRARY
To build a standard run-time library, the user specifies first, the language

that the 1library supports, and second, the subsets of directives that are
desired for the 1library. A full standard 1library contains all subsets of

directives.
4.2.1 Specifying the Language

To specify Pascal as the language supported by the 1library, enter the
following command while assembling the RRTL:

ASM 9998.RRTL.RRTLPASC/9998.RRTL.RRTLSRC,PRTL,PRTL;RMD

The files RRTLPASC and RRTLABSF contain the equate statements that designate
Pascal as the support language.

ACCESS TO SYSTEM DIRECTIVES

4.2.2 Specifying a Standard Subset

The file RRTLIDS.EQ contains the library scope equates, one equate for each
directive subset. To include a particular directive subset in the library,
the equate is set to 1. To omit a particular subset from the library, the
equate is set to 0:

0
1

Omit the group of directives
Include the group of directives

For example, a full standard 1library that includes all directive subsets would
be represented in the RRTLIDS.EQ file as follows:

S$RMS EQU 1 RMS68K directives
S$I0S EQU 1 I0S directives

S$FHS EQU 1 FHS directives

S$GEN EQU 1 GENERIC Trap routines

4.3 BUILDING A CUSTOMIZED RUN-TIME LIBRARY

Users can customize the run-time library either by creating their own library
routines, or deleting all routines that are not required.

4.3.1 Deleting Directive Routines from the RRTL

To customize a library so that it contains only those routines that are
required, do the following:

STEP 1. Modify the file RRTLIDS.EQ to indicate the directive subsets
that are to be omitted completely from the 1library. For
example, if no FHS directives are required, set the equate S$FHS
to 0. A1l references to the FHS directives are excluded from
the library modules.

STEP 2. Exclude individual routines from the Tlibrary by deleting
references to the routine from the following modules:

Library Routine Source File (one of the following):

9998.RRTL.SRCIOS.SA for IOS routines
9998.RRTL.SRCFHS.SA for FHS routines
9998.RRTL.SRCRMS.SA for RMS68K routines
9998.RRTL.SRCGEN.AI for generic trap routines

Access Routine Source File (one of the following):
9998.RRTL.ACSIOS.AI for IOS routines
9998.RRTL.ACSFHS.AI for FHS routines

9998.RRTL.ACSRMS . Al for RMS68K routines
9998.RRTL.ACSGEN.AI for generic trap routines

10

STEP 3.

ACCESS TO SYSTEM DIRECTIVES

Vector Table:
9998.RRTL.RRTLSRC.SA

Access Routine External Definition File:
9998.RRTL.ACSXDEF.AI

Access Code Definition File:
9998.RRTL.ACSCODES.AI

After the source files are edited, create the Tibrary by
executing both of the following chain files:

9998.RRTL.RTL.CF (RRTL routines)
9998.RRTL.ACS.CF (Access routines)

Descriptions of both chain files are contained in Appendix C.

4.3.2 Adding Directive Routines to the Run-Time Library

To create

library routines and include them with the standard RRTL routines,

do the following:

STEP 1.

STEP 2.

STEP 3.

STEP 4.

STEP 8.

STEP 6.

Create the library routine.

Carefully study the information in Chapter 2 that describes the
Pascal calling conventions. Pay particular attention to the
registers that must be preserved for the Tanguages and the
parameter passing mechanisms.

Update the RRTL source file.

Source code for newly <created 1library routine can be
incorporated as an include file, merged into one of the existing
include files, or merged into RRTLSRC.SA.

Add an entry for the routine to the external reference file,
ACSXDEF .AI.

Add an entry for the routine to the vector table located in
RRTLSRC.SA. :

Add an entry for the routine to the access code module,
ACSCODES.AI. This entry and the entry in the vector table must
correspond.

After the source files are modified, create the T1library
by executing the following chain files:

9998.RRTL.RTL.CF (RRTL routines)
9998.RRTL.ACS.CF (Access routines)

11

ACCESS TO SYSTEM DIRECTIVES

THIS PAGE INTENTIONALLY LEFT BLANK.

12 .

APPENDIX A

APPENDIX A
RESIDENT RUN-TIME LIBRARY DIRECTIVE DESCRIPTIONS

This appendix contains a description of each directive included in the
RRTL. The descriptions are organized by directive group:

RMS68K directives

I10S directives

FHS directives
Generic trap routines

Paragraph A.1l
Paragraph A.2
Paragraph A.3
Paragraph A.4

A.1 RMS68K DIRECTIVES

The RMS68K directive descriptions have been organized into eight sub-groups,
following the format used in the M68000 Family Real-Time Multitasking Software
User’s Manual. The sub-groups are defined as follows:

Paragraph A.1.1 - Event Management Directives

Paragraph A.1.2 - Memory Management Directives

Paragraph A.1.3 - Task Management Directives

Paragraph A.1.4 - Time Management Directives

Paragraph A.1.5 - Semaphore Management Directives
Paragraph A.1.6 - Trap Server Management Directives
Paragraph A.1.7 - Exception Monitor Management Directives
Paragraph A.1.8 - Exception Management Directives

Within these groups, the directives are arranged in alphabetical order. The
single driver directive is described in:

Paragraph A.1.9 - Driver Directive
A.1.1 Event Management Directives

a. LDEASQ - Deallocate Asynchronous Service Queue (ASQ)

Directive number = 32
The LDEASQ 1library vroutine provides access to the RMS68K

directive DEASQ. The Deallocate-ASQ function frees the memory
dedicated to the reguestor’s ASQ.

13

b.

LGTASQ

APPENDIX A

Call Line: RVL = LDEASQ()
Where: RVL = Returned Value (Always zero)
Declaration:

function Tldeasq
: integer; forward;

Allocate ASQ
Directive number = 31

The LGTASQ 1library routine provides access to the RMS68K
directive GTASQ. The Allocate-ASQ function allocates memory
for the target task’s ASQ.

Call Line: RVL = LGTASQ(TSK,SES,ASQS,MXL,QLN,VEC,BFR,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task Id
SES = Session number
ASQS = ASQ Status
MXL = Maximum Message Length
QLN = Que Length
VEC = ASR Service Vector
BFR = Receiving Buffer
PBA = Parameter Block Address

Declaration:

function Tlgtasq(tsk : integer;

ses : integer;
asqs : byte;
mx1 : byte;
gln : integer;
vec : integer;

bfr : integer;
: integer; forward;

14

c.

d.

LGTEVNT

LQEVNT

APPENDIX A

- Get event from its ASQ

Directive number = 38

The LGTEVNT 1library routine provides access to the RMS68K
directive GTEVNT. The Get-Event function moves the oldest
event sent to the task to the receive buffer. If no event
exists in the task’s ASQ, the task goes into a wait-for-event
state.

Call Line: RVL = LGTEVNT(RCV)

Where: RVL
RCV

Returned Value (Status Code)
Address of receiving area

Declaration:

function 1gtevnt(rcv : integer)
: integer; forward;

Queue event to task’s ASQ

Directive number = 35

The LQEVNT 1library routine provides access to the RMSE8K
directive QEVNT. The Queue-Event function places the specified
event in the ASQ of the target task, or moves the event
directly into the target task’s default buffer.

Call Line: RVL = LQEVNT(TSK,SES,OPT,EAD,ALV,PBA)

Where: RVL = Returned Value (Status Code)

TSK = Task Id
SES = Session number
OPT = Options
EAD = Event Address ,
ALV = Alternate Service Vector
PBA = Parameter Block Address

Declaration:

function T1gevnt(tsk : integer;

ses : integer;

opt : word; (Directive options)

ead : integer; (Event address)

alv : integer; (Alternate service vector)

pba : integer)
: integer; forward;

15

e. LRDEVNT -
f. LRTEVNT -
g. LSETASQ -

APPENDIX A

Task reads event from its ASQ
Directive number = 34

The LRDEVNT Tlibrary routine provides access to the RMS68K
directive RDEVNT. The Read-Event moves the oldest event sent
to the task to the receive buffer. If no event exists, the
first two bytes of the receive buffer are set to zero.

Call Line: RVL = LRDEVNT(RCV)

Where: RVL

Returned Value (Status Code)
RCV

Address of receiving area

Declaration:

function 1lrdevnt(rcv : integer)
: integer; forward;

ASR returns after event servicing

Directive number = 37

The LRTEVNT 1library routine provides access to the RMS68K
directive RTEVNT. The Return-from-Event function restores the
environment and returns control to the point where the event
interrupt occurred.

Call Line: RVL = LRTEVNT(ASRO)

Where: RVL = Returned Value (Always zero)
ASRO = ASR options

Declaration:

function Trtevnt(asrs : integer)
: integer; forward;

Task changes its ASQS/ASR status

Directive number = 33

The LSETASQ Tlibrary routine provides access to the RMS68K
directive SETASQ. The Set-ASQ function replaces the requesting
task’s current ASQ, ASR and default-receive-buffer status with
the requested status.

16

h.

LWTEVNT

APPENDIX A

Call Line: RVL = LSETASQ(ASRO)

Where: RVL
ASRO

Returned Value (Status Code)
ASR options

Declaration:

function 1setasg(asgs : integer)
: integer; forward;

Task moves itself to Wait-for-Event state
Directive number = 36
The LWTEVNT 1library routine provides access to the RMS68K
directive WTEVNT. The Wait-for-Event function ensures that the
ASQ and ASR of the requesting task are enabled and places the
task in the Wait-for-Event state.
Call Line: RVL = LWTEVNT()

Where: RVL = Returned Value (Status Code)

Declaration:

function 1Iwtevnt
y : integer; forward;

A.1.2 Memory Management Directives

d.

LATTSEG

- Attach a shareable segment

Directive number = 4

The LATTSEG 1library routine provides access to the RMS68K
directive ATTSEG. The Attach-a-Shareable-Segment function

allows the requesting task control over the logical beginning
address of the segment.

Call Line: RVL = LATTSEG(OPT,ATR,SGN,SGA,SGL,ADR,PBA)

Where: RVL = Returned Value (Status Code)
OPT = Options
ATR = Segment Attribute
.SGN = Segment name
SGA = Physical or logical addr of new segment
SGL = Segment Length
ADR = Physical address returned from trap
PBA = Parameter Block Address

17

b.

c.

LDCLSHR

LDESEG

APPENDIX A

Declaration:

function lattseg(opt : word;
atr : word;
sgn : array[l..4] of char;
sga : integer;
sgl : integer;
var adr : integer;
pba : integer)
: integer; forward;

- Declare a segment shareable

Directive number = 7

The LDCLSHR 1library routine provides access to the RMS68K
directive DCLSHR. The Declare-a-Segment-Shareable function
makes a non-shareable segment (contained within the address
space of the requesting task) into a shareable segment so that
more than one task may attach to it.

Call Line: RVL = LDCLSHR(OPT,ATR,SGN,PBA)

Where: RVL = Return Value
OPT = Options
ATR = Segment Attribute
SGN = Segment name
PBA = Parameter Block Address

Declaration:

function 1ldclshr(opt : word;
atr : word;
sgn : array[l..4] of char;
pba : integer)
: integer; forward;

Deallocate a segment

Directive number = 2

The LDESEG 1library routine provides access to the RMS68K
directive DESEG. The Deallocate-a-Segment function deletes the
specified segment from the target task’s address space.

Call Line: RVL = LDESEG(TSK,SES,OPT,SGN,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task Id
SES = Session number
OPT = Options
SGN = Segment name
PBA = Parameter Block Address

18

APPENDIX A

Declaration:

function 1ldeseg(tsk : integer;
ses : integer;
opt : word;
sgn : array[l..4] of char;
pba : integer)
: 1nteger forward;

Allocate a segment

Directive number = 1

The LGTSEG 1library routine provides access to the RMS68K
directive GTSEG. The Allocate-a-Segment function enables a
task to obtain a named segment of memory for itself or another
task.

Call Line: RVL = LGTSEG(TSK,SES,OPT,ATR,SGN,SGA,SGL,ADR,SZ,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task Id
SES = Session number
OPT = Options
ATR = Segment Attribute
SGN = Segment name
SGA = Physical or logical addr of new segment
SGL = Segment Length
ADR = Physical address returned from trap
SZ = Size of largest free block available
PBA = Parameter Block Address

Declaration:

function T1gtseg(tsk : integer;
ses : integer;
opt : word;
atr : word;
sgn : array[l..4] of char;
sga : seg_addr;
sgl : integer;
var adr : integer;
var sz : integer;
pba : integer)
: integer; forward;

19

8.

Ta

LSHRSEG

LTRSEG

APPENDIX A

- Grant shared segment access

Directive number = 5

The LSHRSEG 1library routine provides access to the RMS68K
directive SHRSEG. This directive places an existing shareable
segment within another task’s address space.

Call Line: RVL = LSHRSEG(TSK,SES,OPT,ATR,SGN,SGA,SGL,ADR,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task Id
SES = Session number
OPT = Options
ATR = Segment Attribute
SGN = Segment name
SGA = Physical or logical addr of new segment
SGL = Segment Length
ADR = Physical address returned from trap
PBA = Parameter Block Address

Declaration:

function T1shrseg(tsk : integer;
ses : integer;
opt : word;
atr : word;
sgn : array[l..4] of char;
sga : seg_addr;
sgl : integer;
var adr : integer;
pba : integer)
: integer; forward;

Transfer segment

Directive number = 3

The LTRSEG 1library routine provides access to the RMS68K
directive TRSEG. The Transfer-Segment directive removes a

segment from the requesting task’s address space and places it
within the address space of another task.

20

APPENDIX A

Call Line: RVL = LTRSEG(TSK,SES,OPT,ATR,SGN,SGA,ADR,PBA)

Where: RVL = Returned Value (Status Code)

TSK = Task Id
SES = Session number
OPT = Options
ATR = Segment Attribute
SGN = Segment name
SGA = Physical or logical addr of new segment
ADR = Physical address returned from trap
PBA = Parameter Block Address

Declaration:

function 1trseg(tsk : integer;
ses : integer;
opt : word;
atr : word;
sgn : array[l..4] of char;
sga : seg_addr;
var adr : integer;
pba : integer)
: integer; forward;

Receive segment attributes

Directive number = 9

The LRCVSA 1library routine provides access to the RMSE8K
directive RCVSA. The Recejve-Segment-Attributes directive
returns a description of the specified segment to the
requesting task.

Call Line: RVL = LRCVSA(TSK,SES,OPT,SGN,SGA,BFR,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task Id
SES = Session number
OPT = Options
SGN = Segment Name
SGA = Physical or logical addr of new segment
BFR = Address of buffer containing segment
information
PBA = Parameter Block Address

2l

h.

LMOVELL

APPENDIX A

Declaration:

function Trcvsa(tsk : integer;
ses : integer;
opt : word;
sgn : array[l..4] of char;
sga : seg_addr;
bfr : integer;
pba : integer)
: integer; forward;

- Move from logical address

Directive number = 6

The LMOVELL 1library routine provides access to the RMS68K
directive MOVELL. The Move-Logical-Address directive requests
that data be copied from the logical address space of one task
to the logical address space of another task.

Call 1ine: RVL = LMOVELL(TSK,SES,LADR,DTSK,DSES,DADR,LEN,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task Id
SES = Session number
LADR = Source Logical Address
DTSK = Destination Taskname
DSES = Destination Session number
DADR = Destination Logical Addresses
LEN = Length of the data block
PBA = Parameter Block Address

Declaration:

function Imovell(tsk : integer;
ses : integer;
ladr : integer;
dtsk : integer;
dses : integer;
dadr : integer;
len : integer;
pba : integer)
; integer; forward;

s

Vs

b

LMOVEPL

LFLUSHC

APPENDIX A

Move from physical address

Directive number = 72

The LMOVEPL 1library routine provides access to the RMS68K
directive MOVEPL. The Move-from-Physical-Address directive

requests that data be copied from any physical address to a
logical address within a target task’s address space.

Call line: RVL = LMOVEPL(PADR,DTSK,DSES,DADR,LEN,PBA)

Where: RVL = Returned Value (Status Code)

PADR = Source Physical Address
DTSK = Destination Taskname
DSES = Destination Session number
DADR = Destination Logical Addresses
LEN = Length of the data block
PBA = Parameter Block Address

Declaration:

function 1movepl(padr : integer;
dtsk : integer;
dses : integer;
dadr : integer;
len : integer;
pba : integer)
: integer; forward;

Flush user cache
Directive number = 75
The LFLUSHC 1ibrary routine provides access to the RMS68K

directive FLUSHC. The Flush-User-Cache directive flushes all
mode entries from all cache known to the Executive.

Call Line: RVL = LFLUSHC()

Where: RVL

Returned Value (Always zero)
Dec]ération:

function 1flushc
: : integer; forward;

23

APPENDIX A

A.1.3 Task Management Directives

a.

b.

LABORT

LCRTCB

Task aborts itself
Directive number = 14

The LABORT 1library routine provides access to the RMS68K
directive ABORT. The Abort-Self directive halts the execution
of the requesting task and removes the task from memory.

Call Line: RVL

LABORT (ABC)

Where: RVL

Returned Value (Always zero)
ABC

Abort Code

Declaration:
function Tabort(abc : word)
: integer; forward;
Create Task Control Block (TCB)

Directive number = 11

The LCRTCB 1library routine provides access to the RMS68K
directive CRTCB. The Create-TCB directive allocates memory for

the TCB and initializes it with information from the parameter
block.

Call Line: RVL = LCRTCB(TSK,SES,OPT,MNAM,MSES, IPR,LPR,ATR,ENT,UID, PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task Id
SES = Session number
OPT = Options
MNAM = Monitor Task Name
MSES = Monitor Session Number
IPR = Initial Priority
LPR = Limit Priority
ATR = Task Attributes
ENT = Task Entry Point
UID = User Generated Id
PBA = Parameter Block Address

24

APPENDIX A

Declaration:

function Tcrtcb(tsk : integer;
ses : integer;
opt : word;
mngm : integer;
mses : integer;
ipr : byte;
Ipriuasbyte;
atr : word;
ent : integer;
uid T word;
pba : integer)

: integer; forward;
c. LGTSKID - Get task ID
Directive number = 12
The LGTSKID 1ibrary routine provides access to the RMS68K
directive GTTASKID. In response to the input of a taskname and
session number, the executive returns the target task ID.

Call Line: RVL

LGTSKID(NAME,RSES,RTSK, PBA)

Where: RVL = Returned Value (Status Code)
NAME = TSK,SES
TSK = Task ID
SES = Session Number
RSES = Session Number (Returned)
RTSK = Task ID (Returned)
PBA = Parameter Block Address

Declaration:

function 1gtskid(tsk : integer;

ses : integer;
var rtsk : integer;
var rses : integer;
pba : integer)

. integer; forward;

2b

d.

(8

APPENDIX A

LGTTSKNAM - Get taskname

LRELINQ

Directive number = 10

The LGTTSKNAM Tibrary routine provides access to the RMS68K
directive GTTASKNM. The executive returns the taskname and
session number of the target task when the task ID is entered.

Call Line: RVL = LGTTSKNAM(TSK, SES,RTSK, PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
RTSK = Task ID (Returned)
RSES = Session Number (Returned)
Declaration:

function 1lgttsknam(tsk : integer;

ses : integer;
var rtsk : integer;
var rses : integer;

pba : integer)
: integer; forward;

Relinquish execution

Directive number = 22

The LRELINQ T1ibrary routine provides access to the RMS68K
directive RELINQ. This directive permits a task to relinquish
control of the processor to tasks of equal or slightly lower
priority.
Call Line: RVL = LRELINQ()

Where: RVL = Returned Value (Status Code)
Declaration:

function Treling
: integer; forward;

26

Fa

g.

LRESUME

LSETPRI

APPENDIX A

Resume’ target task

Directive number = 18

The LRESUME 1library routine provides access to the RMS68K
directive RESUME. ~ The executive resumes execution of a
previously suspended task. .

Call Line: RVL = LRESUME(TSK,SES,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
PBA = Parameter Block Address

Dec]aratibn:

function 1resume(tsk : integer;
ses : integer;
pba : integer)
: integer; forward;

Change priority of a task

Directive number = 24

The LSETPRI 1library routine provides access to the RMS68K
directive SETPRI. The executive changes the current priority
of the target task to the value specified.

Call Line: RVL

LSETPRI(TSK,SES,NCPR,LPR,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
NCPR = New Current Priority
LPR = Limit Priority (Returned)
PBA = Parameter Block Address

Déclaration:

function 1setpri(tsk : integer;
ses : integer;
ncpr : byte;
Tpr : byte;
pba : integer)
: integer; forward;

27

h.

LSTART

APPENDIX A

Start task

_Directive number = 13

The LSTART 1library routine provides access to the RMS&8K
directive START. The executive puts the target task into the
READY state, based on its current priority, to wait for
execution.

call Line: RVL

LSTART(TSK,SES,OPT,MNAM,MSES,RADR,NAME,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
OPT = Options
MNAM = Taskname
MSES = Monitor Session
RADR = Address of Register Area
NAME = Taskname of Started Task (Returned)
PBA = Parameter Block Address
Declaration:

function 1start(tsk : array{l..4] of char;
ses : integer;
opt . word;
mtsk : integer;
mnam : integer;
var radr : res_data_area (shown below)
var name : array[l..4] of char;
pba : integer)
. integer; forward;

Record - register setup area

reg data_area =
record
regd0 : integer;
regdl : integer;
regd? : array[l..4] of char; user volume }
regd3 : integer; user number }

{ taskname }
%
regd4 : array[l..4] of char; % catalog (chars 1-4) }
%
(
(

session number)

regdb : array[l..4] of char; catalog (chars 5-8) }

regdé : integer; command line length }

regd7 : integer; LUN asdsignment bit map }

rega0 : integer;

regal : array[l..4] of char;

gegas : array[l..6] of integer
end;

default terminal id }

28

1.

B

LSTOP -

LSUSPEND -

APPENDIX A

Stop task

Directive number = 25

The LSTOP 1library routine provides access to the RMS68K
directive STOP. The executive stops execution of the target
task and moves it to the DORMANT state with all resources still
attached.

Call Line: RVL

LSTOP(TSK, SES,NAM, PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
NAM = Taskname (of Stopped Task)
PBA = Parameter Block Address
Declaration:

function T1stop(tsk : integer;
ses : integer;
var nam : array[l..4] of char;
pba : integer)
: integer; forward;

Suspend task
Directive number = 17

The LSUSPEND 1ibrary routine provides access to the RMS68K
directive SUSPEND. The executive places the requesting task

into the WAIT state until a WAKEUP directive is issued by
another task.

Call Line: RVL = LSUSPEND()

Where: RVL Returned Va1ue (Status Code)

Declaration:

function 1suspend
: integer; forward;

29

k.

14

LTERM

LTERMT

APPENDIX A

Task terminates itself
Directive number = 15
The LTERM 1library routine provides access to the RMS68K
directive TERM. The executive halts execution of the
requesting task and removes the task from memory.
Call Line: RVL = LTERM()

Where: RVL = Returned Value (Status Code)

Declaration:

function 1lterm
: integer; forward;

Terminate target task

Directive number = 16

The LTERMT 1library routine provides access to the RMS68K

directive TERMT. The executive halts execution of the target
task and removes the task from memory.

Call Line: RVL = LTERMT(TSK,SES,OPT,ABC,NAM,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
OPT = Options
ABC = Abort Code
NAM = Name of Terminated Task
PBA = Parameter Block Address

Declaration: -

function Ttermt(tsk : array[l..4] of char;
ses : integer;
opt : word;
abc : word;
var nam : array[l..4] of char;
pba : integer)
: integer; forward;

30

APPENDIX A

Task moves itself to WAIT state
Directive number = 19
The LWAIT 1library routine provides access to the RMS68K
directive WAIT. The executive places the requesting task into
the WAIT state until a WAKEUP directive is issued by another
task.
Call Line: RVL = LWAIT()

Where: RVL = Returned Value (Status Code)
Declaration:

function Iwait
: integer; forward;

Wakeup target task

Directive number = 20

The LWAKEUP 1library routine provides access to the RMS68K
directive WAKEUP. The executive moves the specified target
task from the WAIT state to the READY state to await execution.

Call Line: RVL = LWAKEUP(TSK,SES,PBA)

Where: RVL = Returned Value (Status Code)
TSK- = Task. ID
SES = Session Number :
PBA = Parameter Block Address
Declaration:

function 1Iwakeup(tsk : array[l..4] of char;
ses : integer;
pba : integer)
: integer; forward;

31

0.

P.

LTSKATTR -

LTSKINFO -

APPENDIX A

Receive task user number and attributes
Directive number = 23

The LTSKATTR Tlibrary routine provides access to the RMS68K
directive TSKATTR. The executive returns the target task’s
user number and attributes to the requestor.

Call line: RVL = LTSKATTR(TSK,SES,USRN,ATTR,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
USRN = User Number
ATTR = User Attributes
PBA = Parameter Block Address
Declaration:

function T1tskattr(tsk : integer;
ses : integer;
var usrn : word;
var attr : word;
pba : integer)
: integer; forward;

Receive copy of TCB

Directive number = 28

The LTSKINFO 1library routine provides access to the RMS68K
directive TSKINFO. The executive moves a copy of the target
task’s TCB to the requestor’s address space.

Call line: RVL = LTSKINFO(TSK,SES,OPT,BADR,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
OPT = Options
BADR = Buffer Address
PBA = Parameter Block Address

Declaration:

function 1tskinfo(tsk : integer;
oo ses : integer;
opt : word;
badr : integer;
pba : integer)
: integer; forward;

32

APPENDIX A

A.1.4 Time Management Directives

d.

b.

c.

LDELAY

LDLAYW

LRQSTPA

Task moves itself to delay state
Directive number = 21

The LDELAY 1library routine provides access to the RMS68K
directive DELAY. The executive delays the execution of the
requesting task until a specified amount of time elapses.

Call Line: RVL = LDELAY(DLY)

Where: RVL = Returned Value (Status Code)
DLY = Length of time to delay

Declaration:

function 1ldelay(dly : integer)
: integer; forward;

DELAY, WTEVNT, and WAIT functions are performed
Directive number = 30

The LDLAYW 1library routine provides access to the RMS68K
directive DLAYW. The executive delays the execution of the
requesting task until one of the following events occurs: a
specified amount of time elapses; an asynchronous event
arrives; or a WAKEUP is sent to the waiting task.

Call Line: RVL = LDLAYW(DLY)

Where: RVL

Returned Value (Status Code)
DLY

Length of Time to Delay

Declaration:

- function 1dlayw(dly : integer)

: integer; forward;
Request periodic activation
Directive number = 29
The LRQSTPA 1library routine provides access to the RMS68K

directive RQSTPA. The executive activates the target task at
an initial time and at optional intervals.

a3

APPENDIX A

Call Line: RVL = LRQSTPA(TSK,SES,OPT,TIME,INTV,SADR,RQID,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
OPT = Options
TIME = Initial Time
INTV = Interval
SADR = Service Address
RQID = Activation Request ID
PBA = Parameter Block Address

Declaration:

function 1rgstpa(tsk : integer;
ses : integer;
opt : word;
time : integer;
intv : integer;
sadr : integer;
rqid : integer;
pba : integer)
: integer; forward;

d. LGTDTIM - Get date and time
Directive number = 74
The LGTDTIM 1library routine provides access to the RMS68K

directive GTDTIM. The executive places the current system date
and time into the specified return parameter block.

Call Tine: RVL

LGTDTIM(CDAT,CTIM,PBA)

Where: RVL = Returned Value (Status Code)
CDAT = Current System Date
CTIM = Current System Time
PBA = Parameter Block Address
Declaration:

function 1gtdtim(var cdate : integer;
: var ctime : integer;
pba : integer)

: integer; forward;

34

€

LSTDTIM

APPENDIX A

- Set 'system date and time

Directive number = 73

The LSTDTIM 1library routine provides access to the RMS68K
directive STDTIM. The executive updates the system date and
time. '

Call line: RVL = LSTDTIM(NDAT,NTIM,PBA)

Where: RVL = Returned Value (Status Code)
NDAT = New System Date
NTIM = New System Time
PBA = Parameter Block Address
Declaration:

function 1stdtim(cdate : integer;
ctime : integer;
pba : integer)
: integer; forward;

A.1.5 Semaphore Management Directives

d.

LATSEM - Attach to semaphore

Directive number = 41

The LATSEM 1library routine provides access to the RMS68K
directive ATSEM. The executive allows the requesting task to
use the specified semaphore.

Call Line: RVL = LATSEM(SNAM,STYP,KEY,PBA)

Where: RVL = Returned Value (Status Code)
SNAM = Semaphore Name
STYP = Semaphore Type
KEY = Semaphore Key
PBA = Parameter Block Address

Declaration:

function latsem(snam : array[l..4] of char;
styp : byte;
var key : integer;
pba : integer)
: integer; forward;

35

b.

C.

LCRSEM

LDESEM

APPENDIX A

Create semaphore

Directive number = 45

The LCRSEM 1library routine provides access .to the RMS68K
directive CRSEM. The executive creates or re-initializes the
specified semaphore, and allows the requesting task to use it.

Call Line: RVL = LCRSEM(SNAM, ICNT,STYP,KEY,PBA)

Where: RVL = Returned Value (Status Code)
SNAM = Semaphore Name
ICNT = Initial Count
STYP = Semaphore Type
KEY = Semaphore Key
PBA = Parameter Block Address

Declaration:

function lcrsem(snam : array[l..4] of char;
icnt : byte;
styp : byte;
var key : integer;
pba : integer)
: integer; forward;

Detach from semaphore
Directive number = 44
The LDESEM 1library routine provides access to the RMS68K
directive DESEM. The executive detaches the requesting task

from the specified semaphore.

Call Line: RVL = LDESEM(SNAM,SKEY,PBA)

Where: RVL = Returned Value (Status Code)
SNAM = Semaphore Name
SKEY = Semaphore Key
PBA = Parameter Block Address

Declaration:

function ldesem(snam : array[l..4] of char;
skey : integer; '
pba : integer)
: integer; forward;

36

d.

e.

LDESMA

LSGSEM

APPENDIX A

Detach from all semaphores
Directive number = 46
The LDESMA 1library routine provides access to the RMS68K
directive DESMA. The executive detaches the requesting task
from all semaphores.
Call Line: RVL = LDESMA()
Where: RVL = Returned Value (Status Code)

Declaration:

function ldesma(: integer; forward;

Signal semaphore
Directive number = 43
The LSGSEM 1library routine provides access to the RMS68K
directive SGSEM. The executive increments the current signal
count by 1. If the count is O or negative, the first task on
the semaphore waiting 1ist is removed from the 1ist and placed
in the ready list to await execution.

Call Line: RVL = LSGSEM(SNAM,SKEY,PBA)

Where: RVL = Returned Value (Status Code)
SNAM = Semaphore Name
SKEY = Semaphore Key
PBA = Parameter Block Address
Declaration:

function 1sgsem(snam : array[l..4] of char;
skey : integer;
pba : integer)
: integer; forward;

2

s

LWTSEM

APPENDIX A

Wait on semaphore
Directive number = 42

The LWTSEM Tlibrary routine provides access to the RMS68K
directive WTSEM. The executive decrements the current signal
count of the specified semaphore by 1. If the count is 0 or
positive, the requesting task continues executing. If the
count 1is negative, the requesting task is added to the
semaphore waiting list.

Call Line: RVL = LWTSEM(SNAM,SKEY,PBA)

Where: RVL = Returned Value (Status Code) &
SNAM = Semaphore Name
SKEY = Semaphore Key
PBA = Parameter Block Address

Declaration:

function Iwtsem(snam : array[l..4] of char;
skey : integer;
pba : integer)
: integer; forward;

A.1.6 Trap Server Management Directives

d.

LAKRQST

- Server acknowledge request

Directive number = 54

The LAKRQST 1library routine provides access to the RMS68K —~
directive AKRQST. The executive moves the target task from the
waiting-on-acknowledgement 1list to the state indicated by the
server-request-pending state.

Call Line: RVL = LAKRQST(TSK,SES,OPT,TRP,CCOD,RAO,RDO,PBA)

Where: RVL = Returned Value (Status Code)
; TSK = Task ID
SES = Session Number
OPT = Options
TRP = Trap Number
CCOD = Condition Code
RAO = Register AO
RDO = Register DO
PBA = Parameter Block Address

38

APPENDIX A

Declaration:

function Takrgst(tsk : integer;
ses : integer;

opt : word;
trp : byte;
ccod : byte;

ra0 : integer;
rd0 : integer;
pba : integer)
: integer; forward;

LDERQST - Set user/server request status

Directive Number = 53

The LDERQST 1library routine provides access to the RMS68K
directive DEASQ.

Call Line: RVL = LDERQST(TNBR)

Where: RVL = Returned Value (Status Code)
TNBR = Trap Number :

Declaration:
T Entry at LNRQST for Enable Request Receipt

function Inrgst(tnbr : byte)
: integer; forward;

*x**x Entry at LDRQST for Disable Request Receipt
function 1drgst(tnbr : byte)
: integer; forward;

Detach server function
Directive number = 52
The LDSERVE 1library routine provides access to the RMS68K
directive DSERVE. A server task initiates an orderly shutdown
of service.

Call Line: RVL = LDSERVE(TRP)

Where: RVL
TRP

Returned Value (Status Code)
Trap Number

Declaration:

function ldserve(trp : byte)
: integer; forward;

39

d.

LSERVER -

APPENDIX A

Task is made a server task
Directive number = 51

The LSERVER 1library routine provides access to the RMS68K
directive SERVER. The executive establishes the requesting
task as a server task of the trap instruction specified in the
parameter block.

Call Line: RVL = LSERVER(RADR,STAT,TRAP,PBSZ,PBA)

Where: RVL = Returned Value (Status Code)
RADR = Request Service Address
STAT = Status
TRAP = Trap Instruction ID
PBSZ = Parameter Block Size
PBA = Parameter Block Address
Declaration:

function lIserver(radr : integer;

stat : byte;
trap : byte;
pbsz : byte;

pba : integer)
: integer; forward;

A.1.7 Exception Monitor Management Directives

a.

LDEXMON

- Detach exception monitor

Directive number = 65

The LDEXMON 1library routine provides access to the RMS68K
directive DEXMON. The executive detaches the target task from
its exception monitor. The target task then resumes normal
activity according to its current state.

Call Line: RVL = LDEXMON(TSK,SES,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task Id
SES = Session number
PBA = Parameter Block Address

Declaration:

function Tldexmon(tsk : integer;
ses : integer;
pba : integer)
: integer; forward;

40

b.

C.

LEXMMSK

LEXMON

APPENDIX A

- Set exception monitor mask

Directive number = 66

The LEXMMSK 1library routine provides access to the RMS68K
directive EXMMSK. The specified exception monitor mask is
attached to the target task. When an enabled exception occurs
within the target task, the target task is placed in the wait-
for-command state and an appropriate message is queued to the
target task’s exception monitor.

Call Line: RVL = LEXMMSK(TSK,SES,XMSK,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
XMSK = Exception Monitor Mask
PBA = Parameter Block Address
Declaration:

function lexmmsk(tsk : integer;
ses : integer;
xmsk : integer;
pba : integer)
: integer; forward;

Attach exception monitor
Directive number = 64

The LEXMON 1library routine provides access to the RMS68K
directive EXMON. The executive attaches the target task to the
exception monitor task and places the target task in the wait-
for-command state. An event, indicating the attach, is queued
to the exception monitor.

Call Line: RVL = LEXMON(TSK,SES,XTSK,XSES,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
XTSK = Exception Monitor Task ID
XSES = Exception Monitor Session Number
PBA = Parameter Block Address

Declaration:

function Tlexmon(tsk : integer;
ses : integer;
xtsk : integer;
xses : integer;
pba : integer)
: integer; forward;

41

d.

LPSTATE

APPENDIX A

- Modify task state

Directive number = 68

The LPSTATE 1library routine provides access to the RMS68K
directive PSTATE. An exception monitor can change the state of
a target task by changing the values of the target task’s data
registers, address registers, user stack pointer, program
counter, status register and exception monitor mask.

Call Line: RVL = LPSTATE(TSK,SES,BADR,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
BADR = Buffer Address
PBA = Parameter Block Address
Declaration:

function 1Ipstate(tsk : integer;
ses : integer;
var badr : new_state_info (shown below)
pba : integer)
: integer; . forward;

Record - new state information buffer
new_state_info =
record
regd0 : integer;
regdl : integer;

reéd7 ; intéger;
rega0 : integer;

re§a7 : intéger;

pc : integer;
sr : word
end;

42

e

T

LREXMON

LRSTATE

APPENDIX A

Run task under exception monitor control

Directive number = 69

The LREXMON 1library routine provides access to the RMS68K
directive REXMON. An exception monitor task specifies how a
target task is to be executed. .

Call Line: RVL = LREXMON(TSK,SES,BADR,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
BADR = Buffer Address
PBA = Parameter Block Address
Declaration:

function 1lrexmon(tsk : integer;
ses : integer;
var badr : ex_cntl_info (shown below)
- pba : integer)
: integer; forward;

Record - execution control information

exec_cntrl_info =
record
xopt : word;
vloc : integer;
val : integer;
vmsk : integer;
mxic : integer
end;

execution options)

value location }

value)}

value mask }

maximum instruction count }

Vigine. ! ins) iene ¢ suien { gnin |

Receive task state

Directive number = 67

The LRSTATE 1library routine provides access to the RMS68K
directive RSTATE. An exception monitor receives the current
state of a target task.

Call Line: RVL = LRSTATE(TSK,SES,BADR,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
BADR = Buffer Address
PBA = Parameter Block Address

43

APPENDIX A

Declaration:

function Tlrstate(tsk : integer;
ses : integer;
var badr : record (shown below)
pba : integer)
: integer; forward;

Record - receive state information buffer
receive_state_info =
record
regd0 : integer;
regdl : integer;

reéd7 ; intéger;
regal0 : integer;

reéa7 ; intéger;

pc : integer;
sr . word
end;

A.1.8 Exception Management Directives

a.

LCISR

Configure Interrupt Service Routine (ISR)
Directive number = 61

The LCISR 1library routine provides access to the RMS&8K
directive CISR.

Call Line: RVL = LCISR(TSK,SES,OPT,VEC,IADR,ARG,PBA)

Where: RVL = Returned Value (Status Code)
TSK = Task ID
SES = Session Number
OPT = Options
VEC = Vector Number
IADR = Interrupt Service Routine Address
ARG = User Defined Value
PBA = Parameter Block Address
Declaration: ¢

function Tcisr(tsk : integer;

ses : integer;

opt : word; { Directive options }
vec : byte; { Vector number }
jadr : integer; { ISR address)}

arg : integer; { Argument }

pba : integer)
: integer; forward;

44

APPENDIX A

- Simulate interrupt
Directive number = 62

The LSINT 1library routine provides access to the RMS68K
directive SINT.

Call Line: RVL = LSINT(PRTY,VEC,PBA)

Where: RVL = Returned Value (Status Code)
PRTY = Interrupt Priority
VEC = Vector Number
PBA . = Parameter Block Address
Declaration:
function 1sint(prty : byte; { Interrupt priority }
vec : byte; { Vector number }

pba : integer)
: integer; forward;

Change exception vector
Directive number = 26

The LCXVCT library routine is provided as an alternative to the
announce-exception-vector directive. Pascal already has issued
this directive and established an exception vector table. The
LCXVCT routine provides the user with a convenient way of
changing one of the exception vectors by modifying the already
established vector table.

Input parameters

- Exception Vector Table index
iX = Bus Error

Address Error

ITlegal Instruction

Zero divide

CHK instruction

Trap V instruction

Privilege Violation

- New Exception Vector

~NOoOYOUr W

Return parameters

Status value = 0 for ix’s 3 and 7.

0 for ix’s <1 or >7

1 for ix’s 1,2,4,5 and 6 (Pascal uses these.)

n AN

45

d.

LCTVCT

Call Line: RVL =

Where: RVL
XVCTX
NUXVEC
Declaration:

function lexvet(

APPENDIX A

LCXVCT(XVCTX,NUXVEC)

Returned Value (Status Code)
Exception Vector Table Index
New exception vector

xcxvet @ byte;
nuxvec : integer;

: integer; forward;

Change trap vector

Directive Number = 27

The LCTVCT library routine is provided as an alternative to the
announce-trap-vector directive. Pascal already has issued this
directive and established a trap vector table. The LCXVCT
routine provides the user with a convenient way of changing one
of the trap vectors by modifying the already established vector

table.

Input parameters

- Trap Vector Table index

2-15 for TRAPS #2 - #15

- New Trap Vector

Return parameters
Status value = 0
0
1

n AN

Call Line: RVL

Where: RVL
TVCTX
NUTVEC
Declaration:

function Tlctvet(

for normal return.
for ix's <2 or >15
for 13 or 14 since Pascal uses them.

LCTVCT(TVCTX,NUTVEC)

Returned Value (Status Code)
Trap Vector Table Index
= New Trap Vector

tvetx : byte;
nutvec : integer;

: integer; forward;

46

e.

Fa

LCDIR

Configure a new directive
Directive Number = 58

Call line: RVL = LNCDIR(DNBR,OPT,DRAD,PBA)

or
RVL = LDCDIR(DNBR,OPT,DRAD,PBA)
Where: RVL = Returned Value (Status Code)
DNBR = Directive Number
OPT = Options
DRAD = Directive Routine Address
PBA = Parameter Block Address

%x Fntry at LNCDIR for Disable Directive
Declaration:

function 1lncdir(dnbr : word;
opt : word;
drad : integer;
pba : integer.
: integer; forward;

*%%x% Entry at LDCDIR for Disable Directive
Declaration:

function 1ldcdir(dnbr : word;
opt : word;
drad : integer;
pba : integer
: integer; forward;

LSNAPTRAC - Snap of system trace table

Directive Number = 8

APPENDIX A

The LSNAPTRAC 1library routine provides access to the RMS68K

directive SNAPTRAC.
Call line: RVL = LSNAPTRAC(BADR)

Where: RVL = Returned Value (Status Code)
BADR = Buffer Address

Declaration:

function 1snaptrac(badr : integer;
: integer; forward;

47

APPENDIX A

A.1.9 Driver Directives

a. LCMR - Channel Management Requests (CMR)
Directive Number = 60
The LCMR 1library routine provides access to the RMS68K
directive CMR. The executive invokes the CMR handler when a
directive 60 is issued.

Call Line: RVL = LCMR(PBA)

Where: RVL
PBA

Returned Value (Status Code)
Parameter Block Address

Declaration:
function Tlcmr(pba : integer;
: integer; forward;
A.2 10S DIRECTIVES

The I0S directives have been organized 1into four directive types. The
directives are described as follows:

Paragraph A.2.1 - Data Transfer Requests
Paragraph A.2.2 - Command Function Requests
Paragraph A.2.3 - Claim/Negate Driver Events
Paragraph A.2.4 - Privileged Requests

A.2.1 Data Transfer Requests
a. LREAD - Read request

Code = $00 Function = $01

The LREAD library routine provides access to the I0S directive
READ.

Call Line: RVL

LREAD(LUN, RRN,ADR, LGN, LDT,0PT, CAD, PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
RRN = Random Record Number
ADR = Buffer Address
LGN = Length of Data Buffer
LDT = Length of Data Transfer
OPT = Options
CAD = Completion Address
PBA = Parameter Block Address

48

Declaration:

function

b. LWRITE -
Code =

The LWRITE library routine provides access to the IOS directive

APPENDIX A

Tread(lun : byte;
var rrn : integer;
adr : integer;
lgn : integer;
var 1dt : integer;
opt : word;
rtn : integer;
pba : integer)

Write request

$00 Function =

: integer; forward;

$02

WRITE.
Call Line: RVL = LWRITE(LUN,RRN,ADR,LGN,LDT,OPT,CAD,PBA)
Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
RRN = Random Record Number
— ADR = Buffer Address
LGN = Length of Data Buffer
LDT =" Length of Data Transfer
OPT = Options
CAD = Completion Address
PBA = Parameter Block Address
Declaration:
function 1Iwrite(lun : byte;
var rrn : integer;
adr : integer;
1gn : integer;
var 1dt : integer;
opt : word;
cad : integer;
pba : integer)

: integer; forward;

49

c.

d.

LOUTIN

LUPDATE

APPENDIX A

Output with input request
Code = $00 Function = $04

The LOUTIN library routine provides access to the [0S directive
OUTIN. This call allows a task to write to a device and at the
same time issue a read for response. (The operation requires
an interactive device that supports the call.)

Call Line: RVL

LOUTIN(LUN, SAD,ADR, LGN, LDT,OPT,CAD, PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
RRN = Random Record Number
ADR = Buffer Address
LGN = Length of Data Buffer
LDT = Length of Data Transfer
OPT = Options
CAD = Completion Address
PBA = Parameter Block Address

Declaration:

function Toutin(lun : byte;
var sad : integer;
adr : integer;
lgn : integer;
var 1dt : integer;
opt : word;
cad : integer;
pba : integer)
: integer; forward;

- Update record

Code = $00 Function = $08

The LUPDATE 1library routine provides access to the 1I0S
directive UPDATE. The update-record function is valid only for
an assignment to a non-contiguous file. Update-record must be
used when changing an existing record in a file.

Call Line: RVL = LUPDATE(LUN,RRN,ADR,LGN,LDT,0PT,CAD, PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
RRN = Random Record Number
ADR = Buffer Address
LGN = Length of Data Buffer
LDT = Length of Data Transfe
OPT = Options ‘
CAD = Completion Address
PBA = Parameter Block Address -

50

APPENDIX A

Declaration:

function lupdate(lun : byte;
var rrn : integer;
adr : integer;
lgn : integer;
var 1dt : integer;
opt : word;
cad : integer;
pba : integer)
s 1nteger, forward;

e. LDELETE - Delete-record

Code = $00 Function = $10

The LDELETE 1library routine provides access to the 1I0S
directive DELETE. The Delete-Record request is valid only for
an assignment to an index sequential file.

Call Line: RVL

LDELETE(LUN,RRN,OPT,CAD, PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
N RRN = Random Record Number
‘ OPT = Options
CAD = Completion Address
PBA = Parameter Block Address

Declaration:

function Tdelete(Tun
opt
pba :

. byte;
_ var rrn :

integer;

Hiword;
cad :

integer;
integer)

- 1nteger, forward;

o

Vs

g.

LFORMAT

LTBRAK

APPENDIX A

- Format disk

Code = $00 Function = $20

The LFORMAT 1library routine provides access to the I0S
directive FORMAT. The format request causes a disk or a track
to be formatted.

Call Line: RVL

LFORMAT (LUN, PSN,OPT, PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
PSN = Physical Sector Number
OPT = Options
PBA = Parameter Block Address
Declaration:

function 1format(lun : byte;
var psn : integer;
opt : word;
pba : integer)
: integer; forward;

Transmit break

Code = $00 Function = $40

The LTBRAK 1ibrary routine provides access to the I0S directive
TBRAK. The Transmit-Break request, which applies only to
interactive devices, sends a break to the Tlogical wunit
specified.

Call Line: RVL

LTBRAK(LUN,OPT, PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
OPT = Options
PBA = Parameter Block Address

Declaration:

function 1tbrak(lun : byte;
opt : word;
pba : integer) '
: integer; forward;

52

APPENDIX A

A.2.2 Command Function Requests
a. LPOSITION - Position
Code = $01 Function = $01

The LPOSITION 1library routine provides access to the I0S
directive POSITION.

Call Line: RVL

LPOSITION(LUN,RRN,OPT,PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
= RRN = Random Record Number
OPT = Options
PBA = Parameter Block Address
Declaration:

function 1position(lun : byte;
var rrn : integer;
opt : word;
pba : integer)
: integer; forward;

-

b. LREWIND - Rewind
Code = $01 Function = $02

The LREWIND 1library routine provides access to the IOS
directive REWIND.

— Call Line: RVL

LREWIND(LUN,RRN,OPT,PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
RRN = Random Record Number
OPT = Options
PBA = Parameter Block Address

Declaration:

function lrewind(lun : byte;
var rrn : integer;
opt : word;
pba : integer)
: integer; forward;

53

c.

d.

LTESTIO

APPENDIX A

- Test I/0 complete

Code = $01 Function = $04

The LTESTIO 1library routine provides access to the IOS
directive TESTIO. The Test-I/0-Complete call returns with a
condition code of (Z bit = 1) if there is no outstanding I/0-
proceed to the specified logical unit by the task.

Call Line: RVL = LTESTIO(LUN,PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
PBA = Parameter Block Address

Declaration:

function 1testio(lun : byte;
pba : integer)
: integer; forward;

LWAITO - WAIT Only

Code = $01 Function = $08

The LWAITO library routine provides access to the I0S directive
WAITO. The WAIT-only request places the task into I/0 WAIT
until the completion of a previous I/0-proceed request to the
specified logical unit.

Call Line: RVL = LWAITO(LUN,PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
PBA = Parameter Block Address

Declaration:
function 1waito(lun : byte;

pba : integer)
: integer; forward;

54

APPENDIX A

- HALT I/0

Code = $01 Function = $10

The LHALTIO 1library routine provides access to the 1I0S
directive HALTIO. A HALT-1/0 request cancels an I/0-proceed
request which has been previously issued.

Call Line: RVL

LHALTIO(LUN,PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
PBA = Parameter Block Address

Declaration:

function Thaltio(lun : byte;
pba : integer)
: integer; forward;

Break service

Code = $01 Function = $20

The LBRKSRV 1library routine provides access to the IOS
directive BRKSRV. The Break-Service request applies only to
interactive devices. When a break condition is present on the
device specified, an attention event is sent to the requesting
task.

Call Line: RVL

LBRKSRV(LUN,OPT,CAD, PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
OPT = Options
CAD = Completion Address
PBA = Parameter Block Address
Declaration:

function lbrksrv(lun : byte;
opt : word;
cad : integer;
pba : integer)
: integer; forward;

55

g. LCONFST -

h. LCONFIG -

APPENDIX A

Configure status
Code = $01 Function = $40

The LCONFST library routine provides access to the 1I0S
directive CONFST. The Configure-Status request may be executed
by any task that has an assignment for the device for which the
current configuration information is desired.

Call Line: RVL

LCONFST(LUN,OPT,CPB,PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
OPT = Options
CPB = Configuration Block Address
PBA = Parameter Block Address
Declaration:

function lconfst(lun : byte;
opt : word;
cpb : integer;
pba : integer)
: integer; forward;

Configure

Code = $01 Function = $80

The LCONFIG 1library routine provides access to the 1I0S
directive CONFIG. The Configure-Request may be executed by any

task that has an assignment for the device to be configured.

call Line: RVL = LCONFIG(LUN,OPT,CPB,PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
OPT = Options
CPB = Configuration Block Address
PBA = Parameter Block Address

Declaration:

function lconfig(lun : byte;
opt : word;
cpb : integer;
pba : integer)
: integer; forward;

56

APPENDIX A

A.2.3 Claim/Negate Driver Events

a. LNEGBRK

o~

- Negate break service

Code = $02 Function = $01

The LNEGBRK 1library routine provides access to the IOS
directive NEGBRK. The Negate-Break-Service request applies
only to interactive devices. A task that previously requested
break service may obtain release from break-service
responsibility via this request.

Call Line: RVL

LNEGBRK(LUN, PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
PBA = Parameter Block Address
Declaration:

function Tnegbrk(lun : byte;
pba : integer)
: integer; forward;

A.2.4 Privileged Requests

a. LCNFDEF - Configure defaults

Code

$80 Function = $02

The LCNFDEF 1library routine provides access to the IOS

directive CNFDEF. The configure-default request alters the
default configuration of a device.

Call Line: RVL

LCNFDEF (LUN,OPT,CPB,PBA)

Where: RVL = Returned Value
LUN = Logical Unit (1 Byte)
OPT = Options
CPB = Configuration Block Address
PBA = Parameter Block Address

Declaration:

function lcnfdef(lun : byte;
opt : word;
cpb : integer;
pba : integer)
: integer; forward;

87

APPENDIX A

A.3 FHS DIRECTIVES

The FHS directives have been organized into two types. These types are
described as follows:

Paragraph A.3.1 - Device/File Commands
Paragraph A.3.2 - LDR Directive
A.3.1 Device/File Commands
a. LCHKPT - Checkpoint
Code = $00 Command = $01
The LCHKPT 1library routine provides access to the FHS directive
CHKPT. The Checkpoint function empties the buffered FMS buffers
by writing to the file, or by copying the buffers to the user’s
input buffer. For an indexed file, the function updates the
directory entry.

Call Line: RVL

= LCHKPT(LUN,PBA)
Where: RVL = Returned Value
LUN = Logical Unit
PBA = Parameter Block Address

Declaration:

function 1chkpt(lun : byte;
pba : integer)
: integer; forward;

b. LFDELETE - File delete
Code = $00 Command = $02

The LFDELETE library routine provides access to the FHS directive
FDELETE. The Delete function deletes the file’s directory entry
by zeroing out the first character of the filename field, and
releases the space on the disk previously occupied by the file.

Call Line: RVL = LFDELETE(FDES,WCOD,RCOD,PBA) .

Where: RVL = Returned Value
FDES = File Descriptor
WCOD = Write Code
RCOD = Read Code
PBA = Parameter Block Address

58

APPENDIX A

Declaration:

function 1fdelete(
var fdes : file_dscrpt; { shown below}
wcod : byte;
rcod : byte;
pba : integer)
: integer; forward;

File descriptor record

file_dscrpt =

record

- vol_id : array[l..4] of char;
user_nmbr : word;
catalog : array[l..8] of char;

file_name : array[l..8] of char;
extension : array[l..2] of char
end;

LFCLOSE - File close
Code = $00 Command = $04
The LFCLOSE library routine provides access to the FHS directive
FCLOSE. The Close function discontinues an assigned logical

connection between a task and a file or device.

Call Line: RVL

LFCLOSE (LUN, PBA)

Where: RVL = Returned Value
LUN = Logical unit
PBA = Parameter Block Address
Declaration:

function "1fclose(lun : byte;
pba : integer)
: integer; forward;

59

APPENDIX A

d. LPROTECT - Protect
Code = $00 Command = $08
The LPROTECT library routine provides access to the FHS directive
PROTECT. The Protect function changes an assigned file’s access
permission codes.

Call Line: RVL = LPROTECT(LUN,WCOD,RCOD,PBA)

Where: RVL = Returned Value
LUN = Logical Unit
WCOD = Write Code
RCOD = Read Code
PBA = Parameter Block Address
Declaration:

function 1lprotect(lun : byte;
wcod : byte;
rcod : byte;
pba : integer)
: integer; forward;

e. LRENAME - Rename
Code = $00 Command = $10

The LRENAME library routine provides access to the FHS directive
RENAME. The Rename function changes an assigned filename.

Call Line: RVL = LRENAME(LUN,FDES,PBA)

Where: RVL = Returned Value
LUN = Logical Unit
FDES = File Descriptor Address
PBA = Parameter Block Address
Declaration:

function Trename(lun : byte;
var fdes : file_dscrpt; (shown below)
_ pba : integer)
: integer; forward;

®

60

File descriptor record

file_dscrpt
record
vol_id
user_nmbr
catalog
file_name
extension
end;

: array[l..
: word;
s array[dyi
scarrayiisc.
. array[l..

f. LCHGPERM - Change access permission

— Code = $00 Command = $20

of char;

of char;
of char;
of char

APPENDIX A

The LCHGPERM library routine provides access to the FHS directive
CHGPERM. The Change-Access-Permission function allows the user
to change the current access permission of a file or device which

is assigned.

Call Line: RVL = LCHGPERM(LUN,OPT,WCOD,BCOD,PBA)

Where: RVL
LUN
OPT
WCOD
RCOD
PBA

Declaration:

function 1chgperm(lun :

Returned Value

Logical Unit

Options

Write Code
Read Code _
Parameter Block Address

byte;
opt : word;
wcod : byte;
rcod : byte;

pba : integer)

61

: integer; forward;

APPENDIX A

g. LASSIGN - Assign
Code = $00 Command = $40
The LASSIGN library routine provides access to the FHS directive
ASSIGN. The Assign function establishes a logical connection
between a file or device and the task through a specified Togical
unit under a given access permission.
Call Line:

RVL = LASSIGN(LUN,OPT,FDES,WCOD,RCOD,RECL,SIZ,SSSA,SSEA,SSN,FTYP,PBA)

Where: RVL = Returned Value
LUN = Logical Unit
OPT = Options
FDES = File Descriptor Address
WCOD = Write Code
RCOD = Read Code
RECL = Record Length
SIZ = Size/Pointer
SSSA = Shared Segment Starting Address
SSEA = Shared Segment Ending Address
SSN = Shared Segment Name
FTYP = File Type and User Attributes
PBA = Parameter Block Address
Declaration:

function lassign(lun : byte;
opt : word; :

var fdes : file_dscrpt; (shown below)
wcod : byte;
rcod : byte;

var recl : word; :

var siz+«-3234Z recs (shown below)

sssa : integer;
var ssea : integer;
var ssn : integer;
var ftyp : word;

pba : integer)

: integer; forward;

File descriptor record

file_dscrpt =

record
vol _id : array[l..4] of char;
user_nmbr : word;
catalog : array[l..8] of char;
file_name : array[l..8] of char;
gxtension : array[l..2] of char
end;

62

APPENDIX A

Size record

siz_rec =
record
rsrvd : byte;
key_siz : byte;
fab_siz : byte;
data_blk_siz : byte;
end;

h. LALLOC - Allocate
Code = $00 Command = $80
The LALLOC 1library routine provides access to the FHS directive
ALLOC. The allocate function reserves space on a direct-access
device and in the directory-specified file type.

Call Line: RVL = LALLOC(OPT,FDES,WCOD,RCOD,RECL,SIZ,PBA)

Where: RVL = Returned Value
OPT = Options
FDES = File Descriptor Address
WCOD = Write Code
- RCOD = Read Code
RECL = Record Length
SIZ = Size/Pointer
PBA = Parameter Block Address
Declaration:

function Tlalloc(

- opt : word;
var fdes : file_dscrpt; (shown below)

wcod : byte;

rcod : byte;

recl : word;
$12 -1 siz rec; (shown below)

pba : integer)
: integer; forward;

File descriptor record

file_dscrpt =

record
vol_id : array[l..4] of char;
user_nmbr : word;
catalog : array[l..8] of char;
file_name : array[l..8] of char;
extension : array[l..2] of char
— end;

63

1s

Size record

siz_rec =
record
rsrvd : byte;
key_siz . byte;
fab_siz : byte;
data_blk_siz : byte;
end;

LFCHVOL - Fetch default volume
Code = $01 Command = $08

APPENDIX A

The LFCHVOL library routine provides access to the FHS directive
FCHVOL. The Fetch-Default-Volume routine returns the requested
default volume in the volume-ID field. ‘

Call Line: RVL = LFCHVOL(FDES,PBA)

Where: RVL = Returned Value
FDES = File Descriptor Address
PBA = Parameter Block Address
Declaration:

function 1fchvol(var fdes

:atilezdscrpt;

pba : integer)
: integer; forward;

File descriptor record

file_dscrpt =

record
vol_id : array[l..
user_nmbr : word;
catalog : arrayil..
file_name : array[l..
extension : array[l..
end;

64

of char;

of char;
of char;
of char

(shown below)

APPENDIX A

~j. LCHGLUN - Change LUN assignment

Code = $01 Command = $10

The LCHGLUN library routine provides access to the FHS directive
CHGLUN. The Change-Logical-Unit assignment allows the changing
of a logical unit assignment from one task to another.

Call Line: RVL = LCHGLUN(LUA,OPT,LUB,TSK,SESS,PBA)

Where: RVL = Returned Value
LUA = Logical Unit for Calling Task
OPT = Options
LUB = Logical Unit for Called Task
TSK = Taskname
SESS = Session Number
PBA = Parameter Block Address

Declaration:

function 1lchglun(lua : byte;
A opt : word;
Tub : byte;
tsk ¢ array[l..4}:0f:char;
sess : integer;
pba : integer)
: integer; forward;

k. LFCHDEV - Fetch device mnemonics
Code = $01 Command = $20
The LFCHDEV library routine provides access to the FHS directive
FCHDEV. The Fetch-Device-Mnemonics function returns the device
name, volume-id and status of all devices known to the system.

Call Line: RVL = LFCHDEV(BPTR,BLGN,PBA)

Where: RVL = Returned Value
BPTR = Buffer Pointer
BLGN = Buffer Length
PBA = Parameter Block Address

65

APPENDIX A

Declaration:

function 1fchdev(var bptr : array[1..10] of device_mnem;
(shown below)
var bign : device_size; (shown below)
pba : integer)
. integer; forward;

Device mnemonic record

device_mnem =

record
device_name : integer;
volume_id : integer;
reserved : byte;
status . byte
end;

Device size record

device_size =
record
nmbr_entries : word;
total entries : word
end;

1. LFCHDIR - Fetch directory entry
Code = $01 Command = $40

The LFCHDIR library routine provides access to the FHS directive
FCHDIR. The Fetch-Directory function returns a directory entry

(60 bytes) with each call. An end-of-directory status is
indicated with the last directory.

Call Line: RVL = LFCHDIR(LUN,FDES,SIZ,PBA)

Where: RVL = Returned Value
LUN = Logical Unit
FDES = File Descriptor Address
S1Z = Size/Pointer
PBA = Parameter Block Address

Declaration:

function 1fchdir(lun : byte;
var fdes : file_dscrpt; (shown below)
var siz : siz_rec; (shown below)
pba : integer)
: integer; forward;

66

m.

File descriptor record

file_dscrpt =
record
vol_id
user_nmbr
catalog
file_name
extension
end;

Size record

siz_rec =
record
rsrvd

key_siz

fab siz

data_blk_siz

end;

: array[l..4] of char;
: word;

: array[l..8] of char;
+ -arvay[}..8] ‘of char;
: array[l..2] of char

: byte;
. byte;
: byte;
: byte;

LRTVATTR - Retrieve attributes

Code = $01 Command = $80

APPENDIX A

The LRTVATTR library routine provides access to the FHS directive
RTVATTR. The retrieve-attribute function gives the user access
to physical attribute information pertaining to a

device.

particular

Call Line: RVL = LRTVATTR(LUN,FDES,DEVA,RECL,SIZ,FTYP,PBA)

Where: RVL
LUN
FDES
DEVA
RECL
S1Z
FTYP
PBA

Declaration:

Returned Value

Logical Unit

File Descriptor Address
Device Attributes

Record Length

Size/Pointer

File Type and User Attributes
Parameter Block Address

function 1rtvattr(lun : byte;

var
var
var
var
var

fdes : file_dscrpt; (shown below)

deva : word;
recl : word;
siz : siz_rec; (shown below)
ftyp : word;

pba : integer)

: integer; forward;

67

APPENDIX A

File descriptor record

file_dscrpt =

record '
vol_id : array[l..4] of char;
user_nmbr : word;
catalog : array[l..8] of char;

file_name : array[l..8] of char;
extension : array[l..2] of char
end;

Size record

siz_rec = &l
record
rsrvd 1 byte;
key_siz : byte;
fab_siz : byte;
data_blk_siz : byte;
end;

A.3.2 Loader Directive
a. LLOADER
Directive Number = $01

The LLOADER library routine provides access to the FHS directive
LOADER.

Call Line: RVL = LLOADER(LPBA)

Where: RVL = Returned Value
LPBA = Loader Parameter Block Address

Declaration:

function 1loader(1pb_ptr : integer)
: integer; forward;

68

APPENDIX A

A.4 GENERIC TRAP ROUTINES

Generic TRAP routines have been provided for the TRAP #2 and TRAP #3
directives to allow for more efficient I/0 processing. In these cases, the
address of the parameter block is the only argument.

a. LTRAP2 - TRAP #2 interface

This subroutine allows access to IOS via TRAP #2s.

Call Line: RVL

LTRAP2(PBA)

Where: RVL
& PBA

Returned Value
Parameter Block Address*

Declaration:

function ltrap2(var bloc : ios_prm_blk)
: integer; forward;

b. LTRAP3 - TRAP #3 interface

]

This subroutine allows access to FHS via TRAP #3s.

— Call Line: RVL LTRAP3(PBA)

Where: RVL
PBA

Returned Value
Parameter Block Address*

Declaration:

function 1trap3(var bloc : fhs_prm_blk)
: integer; forward;

69

APPENDIX A

THIS PAGE INTENTIONALLY LEFT BLANK.

70

APPENDIX B
RESIDENT RUN-TIME LIQRARY SOURCE FILE

B.1 EQUATE FILES
INCLUDE '9995.RRTt.&.RRTLEQU.EQ RRTL EQUATES

IFNE S$RMS

IFEQ LANGID-L$Pascal
INCLUDE 9998.RR.FIOEQU.SA

ENDC

ENDC

B.2 MACRO FILE
INCLUDE 999S.RRTL.&.RRTLMAC.MC RRTL MACROS

SECTION 8
RTLVEC EQU ¥
DC.L RRTLEND-RTLVEC - LONG JSR ROUTINE VECTOR

JUMP VECTOR TABLE

VECTBL EQU *
TFNE SSRMS
DC.L LSATTSEG-*
DC.L LSCMR-*
ENDC
TFNE $$10S
DC.L LSREAD-*
DC.L LSCNFDEF-*
ENDC
IFNE SSFHS
DC.L LSCHKPT-*
DC.L LSLOADER-*
ENDC
TFNE SSGEN
DC.L LSTRAP1-* TRAP #1 SUBROUTINE
DC.L LSTRAP4-* TRAP #4 SUBROUTINE

71

APPENDIX B

APPENDIX B

ENDC
IFNE SSGP

0C.L LSLOC-* LOCATION SUBROUTINE

DC. L LSDEF-* PROVIDE DEFAULT DATA SUBROUTINE
ENDC

B.3 RUN-TIME LIBRARY SOURCE

IFNE SSRMS

INCLUDE 9998.RRTL.SRCRMS.SA RMS Directives
ENDC
IFNE S$IO0S

INCLUDE 9998.RRTL.SRCIOS.SA I0S Directives
ENDC
IFNE S$FHS

INCLUDE 9998.RRTL.SRCFHS.SA FHS Directives
ENDC
IFNE S$SGEN

INCLUDE 9998.RRTL.SRCGEN.SA Generic Routines
ENDC
IFNE S$GP

INCLUDE 9998.RRTL.SRCGP.SA General Purpose Routines
ENDC

B.4 COMMON SUBROUTINES

IFNE S$I0S

INCLUDE 9998.RRTL.SUBSIOS.AI I0S Directives
ENDC
IFNE SSFHS

INCLUDE 9998.RRTL.SUBSFHS.AI FHS Directives
ENDC
IFNE SSRMS

INCLUDE 9998.RRTL.SUBSRMS.AI RMS Directives
ENDC
END

72

APPENDIX C
CHAIN FILES

C.1 RTL.CF - Chain file to assemble the run-time library routines

=ASM 9998.RRTL.RRTLPASC/9998.RRTL.RRTLSRC, PRTL,PRTL;RMDZ=100
C.2 ACS.CF - Chain file to assemble the access routines

=ASM 9998.RRTL.RRTLACCS,RRTLACCS,RRTLACCS;RMDZ=100
=END

73

APPENDIX C

 SUGRESTION/PROBLEM . - micro}

REPORT

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diabio Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company i Division

Street Mail Drop Phone
City State Zip
For Additional Motoroia Publications Four Phase/Motorola Customer Support, Tempe Operstions
Literature Distribution Center (800) 528-1908

816 West 24th Street (602) 438-3100

Tempe, AZ 85282

(602) 994-8581

@ MOTOROLA

2 B S At AR R 2 it o W 8y e A e

ENA

B S + »-,-v-u-;xg-_g,lha-u—-k»:w_;‘ s L p—— . .)
"
= UTE—
T B R T S T AR S AR DT g T S e SR TR < il RreerrzeSs
i et = i i i
b - .
S i Kt e A ST S ot A S .
B T, - a5 e o - S e e P R S SO 18
.
SR e e A S e s e e —— bt N S S A
e o RGN N S A —_— e ! N S, e A P s o 25 5 P N A 50
.
.
Vot e B g e e A A U Y T (SN By e T e ey 20, SEN—— S
T - s R 3 E: < o o o o -
] ,_ . &
T e £ S e b S e 5 R - Ao
K
B - s T iah Rt S B S B -
.
o S — , 3 ST
Prroamie ST %
i+ A S s - — s kg3 S - - -
" - 2 = §
U . - . SR -+ o 7 .
e ek i e e B ; PSRttt A S 5 v O e i o et i

e e e R

B e e e e T U

)

v b

POSTFACH 1229 - MUNCHNER STRASSE A

mbﬂ QMBH GESCHAFTSBEREICH HALBLEITER
- Ll L N
8. D-2043 UNTERFOHRING

