~M) moToroLA M6809XPASC/D1

M6809
| Cross Pascal Compiler On EXORmacs
~ User’s Manual

W\x{

. e, WS-8

= QUALITY o PEOPLE * PEREORMANCE

M6809XPASC /D1
MARCH 1983

M6809
CROSS PAscaL COMPILER ON EXORmacs

USER'S MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application Oor use of any Product or circuit
described herein; neither does it convey any license under its patent rights nor
the rights of others.

EXORciser, EXORdisk, EXORmacs, EXORterm, MDOs, VERSAdos, ang VWMC 68/2 are
trademarks of Motorola Inc.

LARK is g trademark of Control Data Corporation.

First Edition

Copyright 1983 by Motorola Inc.

NN

[\SIN S Ol V)

NN N

@]
;

:
:

BSOS N

BN SN

L] L] L]
Ll S S

* o o
VD wWN

B W ow
L]
—

N =

° e
G WA

L]
=

° o
w N

O ogo

TABLE OF CONTENTS

INTRODUCTION
moPE .l......

OPERATING ENVIRONMmT ooau.--‘co.o.oo-cooooo..........

-ocoo.o.coo..o..c-o.oooco.-noo.c-.

MINIMUM IiARMRE REQUIRMEN.I‘S ...o.o..ooo.-o.lo-.a.on.oo
ent System uo..ooo-.o..c..ooooo--.ooo

EXORmacs Developm

WC 68/2 Microcomputer Syst

RELATED PUBLICATION
GENERAL STRUCTURE 0

PREPARING A PROGRAM
GENERAL ,,,.,

em noo.oo-o.-o.oo.o-o‘oo..o

S ..on...ooo..c

F PASCAL COMPILER:::::::::

THE OPTION COMMENT .'...'.'.'f.'.'f.'
BACKUS-NAUR FORM .

FHeNaml%nmt..”.“.“.u D

CMBSRMCM,HMNWHEME coene
One- and Four-Byte Integers .

A Option
F Option
String Functions

oa-onooooooooo. ooooo ®seceoe

Real Numbers -n.on.o.o-o...oooo..ou-..-oo-oo'.ooaoooo.

COMPILING A PROGRAM

GENERAL ..l...‘

COMPILER PHASE] n.“.u.“.m.“.n.u.”.u.n.”.“.
Phase 1 Output
COMPILER PHASE 2 e T T T T, v o wie
Phase 2 oOutput ,......................................

Object File Descr

Pseudo Assembly Listing Descr

RUNNING PHASE 1

iption .c.,.

IPEION. «umstunenssnan Borels

RLINNING PI‘IASE 2 o0 cecee ocoooo..oo'o...o-.-ocooo.-o-oc--

RUNNING THE CRoss LINKAGE EDITOR

GENERAL
RUNTIME ROUTINES ..

SEPARATE COMPILATION

o0 eecccee ...I..............0-0........

©cecvceccscecsce

ASSmBLY IAmUAGE PRmmURES ...'................'....‘.

STACK AND HEAP USAG

PASCAL PROGRAM MEMORY

INVOKING THE CROSS
DOWNLOADING TO M680
THE PASCAL RUNTIME

E .oaa.o-ooooo--‘o'uoootcu.o.oo-o.-.o

LINKAGE EDITm -..o.-..o..oo--o..-o..

9 .co..o..to...oooaooocoa--ooo-o-uo.o

ENVIRONMENT

2-1
2=-1
a1
2-3
2-4
2-4
2=5
2-6
2-6
2-7

3=1
3-1
3-1
3-3
-3
3~4
3-4

o7

4-1
4-1

4-2
4-2
4-2
4-4
4-7
4-8

X
w

e o & o o o
v W -

ooy
wN -

§

NNNNNNNNNNNY

NN HEEREHHRHEREOONOURWN -

WhFHOoOWVWOJOTULIB WNDEHO

NN NNNNNNNNNNNNNNNS

TABLE OF CONTENTS (cont'd)

ASSEMBLY ROUTINE LINKAGE

GENERAL 0 00 0000000 0000000000000000000°00OCIOCOCRCSIEOIOOEECEEOEO®EOSEOSCOCOSOSOTO

PROGRAM PREPARATION .ccccceccccccccosccossscsassoscssccscse
CALLING A ROUTINE ¢ccoascesccccscccssccoscsccssascoccsccss
ROUTINE LINKAGE ¢cceccescccccccssssoocscrsccccssssnscccsse
SAMPLE PROGRAM ¢ccccovcccccccccccscscsscsossossccosccscsccsoss
The Assembly Language Routine Listing ..ccceccecccccese
The Pascal Program Listing eeececececccccccccccccccoces
The Load Map LiSting eecececcecccsceccceccssccccccccccs

PROGRAM EXECUTION

MDOS PROGRAM EXECUTION .cecccccccocccscccccososcosscscnccns
EXTERNAL FILE ASSIGNMENT .ccccocccccccccscccscssccssaccs
Resource Name StriNgS eccccccccccscccsssccccccccccccss
Command Line File AssignmentsS cccecceccecccccccccccsccs
PROGRAM TERMINATION sececcccccscsscccooccscscssscocoaccscce

PASCAL-MDOS I/0 INTERFACE

DATA STRUCTURES .ccccceccscccccossccscssccsscosscscscscscscccce
File Pointer (FP) cececsccccccccccccoscsscccsscccccnscsas
File Descriptor (FD) eccceccccecccccsccccsescsccccccee

INPUT SCHEME cccccccecccccosccccscscscsscscsssscssosscsccsccscs

I/0 ROUTINES cccccccoccccsccocscccsccsoscscscoscccsccccsscssns
Initialize File Descriptor (IFD) ceccccccccccscsccccccs
Assign File to I/O Resource (AFI) cecececccccccccccece
Reset (RST) ecececccccccssscccscsscscosccccsoscsccsscccccsse
Rewrite (RWT) cevessossccssssoosssscscsssccsssssssesncns
Close (CLO) cececccsccssccscsosccscsccsosccsccssscsncccscsss
Get: {GET)= 5% v 5%s shs Akttt i et veos nsiomess esvanieses
Peek (PEE) cesscecccccccscccesccsscccsascssscscsssacccs
PUt (PUT) ceccccccecsscscsoscccccscscossscccsccsccccnccscscs
Read Character (RDC) ccecececccccccccsoocssssccccsosssccccs
Read Boolean (RDB) cescecccccccscsccsccsscscssscscccccscs
Read Integer (RDI) ccceccccecscceccccccccccscccccscncns
Read String (RDS) ecccceccccccccsccescoccsscccsccccscs
Read Packed Array of Characters (RDV) .ccecccecccccacs
Write Character (WRC) ceecccccccccccccccccccssssscccnns
Write Boolean (WRB) ccccccccccccccccccscsscscccscscncs
Write Integer (WRI) ccecccecccscccccccoscascsscsccssns
Write String (WRS) eeccecececcccccocscccncscscccsccscs
Write Packed Array of Character (WRV) ..ccececccocccccs
Read Past End-of-Line (RLN) cccccccccccccccccccscsscas
Write End-—of-Line (WIN) cicccecccccoscscccccsccccsssss
End-of-Line Status (EOL) ceccccccccccccccscccsccncssces
End—of-File Status (EOF) cccccceccccccccccscscsccscsccnse
Page (PAG) ccecececccsccccscccsccsccccccccccscccacccns

EXAMPLES ccccoscccsccncsscscscsssssacssscscssscssssessosnsoes

EXIT ROUTINE ccocccccccccccsccsossascscscscscsscsoscssnsosccscs

ii

AT DR
OO A BRWWWH

(8]

NN
&

CHAPTER 10

10.1
10.2
10.3
10.4

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

FIGURE 1-1.
3=l
4-1,
4-3.

TABLE 2-1.
4-1.
7-1.
7-2.

TABLE OF CONTENTS (cont'd)

PASCAL MDOS I/O INTERFACE

1/0 UTILITY ROUTINES .aiessissesssneeessssssssiosseseess
Validate (VLDT) ceecececcccccccccscsccsssosscscscssccss
Read NeXt (RNXT) ecicewveosessinesisossesssssonesesssssssss
WEite Validate (WVLD) csswsnenesssswesssssssossssssian

EXAMPLES OF NON-MDOS ROUTINES .cccsscscenccscsscscsssscsse

PASCAL: :AND. INTERRUPTS: ssssssnnsssssssesesossesssasisesnis

EXISTING FLOATING POINT SUPPORT

GENERAL © 0000 0000000000000000000000000000000600006006060606000

STANDARD TYPES © 90000000 000000000000000000060000000060060000
CALLING SEQUENCE © 006000000000 00000000000000090300000600000

M6809-PASCAL LIMITATIONS

EXPRESSION COMPLEXITY ©0 0000000000000 0000000003000000000
DATA STRUCTURES weonessenssssnneinnesssssissssnessss v e
PROGRAM CODE © 0000009000900 00000000000090068060600080060600000

SAMPLE PROGRAM COMPILATION AND EXECUTION

COMPILER PHASE 1 LISTING ssescwsesasssissssisssesesossesni
COMPILER PHASE 2 LISTING eccccecccacaccccscosssscsoccnnas
LINKER LISTING sasisssssasevssnssssssssssssssasssssspesine
EXECUTION ccovcecscocee T T S

INTERNAL REPRESENTATION OF DATA .cceccccccccccccccscccsss
ASCII CHARACTER ‘SET o snieisisiessssisaisivimimnn:esesssssenss
PASCAL LANGUAGE PROCESSOR ERRORS ceeecsccssccsesccsccacs
RUNTIME ERRORS .ccccccccccccss sisiaie osnmne esecccssscscccne
REFERENCE GUIDE s s0sessscsosoesosescsnnssennnsaarssssesss

LIST OF ILLUSTRATIONS
Pascal Program Processing .'...............'.........~l.l
Pascal Listing with ErXrors ceeeeeeececcceccccccsccccsccoces
PaSCal Load Nbdule Formt ® ® 00 P00 OO OO OEOEOSEIOOEOEBSOEOPOOEESTPBSIEOPOOPODS
Pascal Runtime MaintenanCe Area .cccecececsececcssccsscsss

LIST OF TABLES

Source Program OptioNS eceesssssesess v o e e i SR W E R
Pascal Runtime Maintenance Area Description cceeeeeecececs.
File Descriptor Status BitsS eessssssssssssunissssscssses
External. REEETENCES: e s oo wmisionie siviss sw s s eseisseessssssss

iii/iv

Pag e

=1l
1=11
1=l
1=13
7=13
7=21

® @ @
=

m\?\o
-

10-1
10-3
10-10
10-12

A-1
B-1
Cc-1
D-1
E-1

1-3
=3
4-3
4-9

2-2
4-10
7-2
7-12

.

-

e

U

FEE SRy ST

i

€% ke o e

Few b @S

s sede e s e ps

ok

-

¥R APy RE

%

‘i‘ﬁfﬁ 5’&2‘ P

PRERE R S = B

5

N DN e &

:mfwmf aush adre

v

*
T B e 7

¥

f

CHAPTER 1

INTRODUCTION

1.1 SCOPE

The purpose of this manual is to assist users in developing M6809 Pascal
programs, using the M6809 Cross Pascal Compiler on EXORmacs or VMC 68/2
Microcomputer System.

The manual presents general information on the operation of the compiler. It
also provides general information on the linking of Pascal programs, assembly
language programs, and appropriate runtime libraries into S-record-format
modules, which may then be downloaded to the M6809 system and executed.

1.2 OPERATING ENVIRONMENT

. VERSAdos Operating System

1.3 MINIMUM HARDWARE REQUIREMENTS
1.3.1 EXORmacs Development System

. EXORmacs Chassis

. EXORterm 155 Display Console
. EXORdisk III Disk Drive Unit
. Model 703 printer

. 384K bytes of RAM

1.3.2 VMC 68/2 Microcomputer System

. VMC 68/2 System (which includes an 8-inch LARK disk drive unit,
MLD-16, and 384K bytes of RAM)

. EXORterm 155 Display Console, or user-supplied dumb ASCII RS-232C
terminal

. Model 703 printer or equivalent

I~

1.4 RELATED PUBLICATIONS
You should be familiar with the following manuals, as pertinent to your system:

EXORdisk II/III Operating System (MDOS) User's Guide (M68MDOS3)
MC6809 Programming Manual (M6809PM)

Macro Assemblers Reference Manual (M68MASR)

VERSAdos System Facilities Reference Manual (M68KVSF)

M68000 CRT Text Editor User's Manual (M68KEDIT)

8-Bit Cross Linkage Editor on EXORmacs User's Guide (M68XLINK)
Pascal Programming Structures for Motorola Microprocessors (TB304)

1.5 GENERAL STRUCTURE OF PASCAL COMPILER

As shown in Figure 1-1, the Pascal compiler consists of two phases. Phase 1
processes a source program and produces a source listing and error messages, as
well as an intermediate code file. This intermediate code is then input to
Phase 2, which creates a pseudo-assembly listing as well as a relocatable 6809
object file. The object file is then combined with needed routines from the
runtime library by the cross linkage editor, and a transportable S-record module
results.

1-2

Pascal
Source
Program

Phase 1
(Compiler)

1

y

Source Intermediate Error
Listing Code File Messages

R]

Phase 2
(Compiler)

B |

Pseudo Relocatabl
Assembly object Code
Listing

8-Bit Cross
Linkage Editor

S-Record
Module

FIGURE 1-1. Pascal Program Processing

1-3/1-4

T

G o ST W

TR

mﬁsw_-.»m.—u.‘-%umﬂ

oA

s 93

b iy

.

i e
Py

:
;
a
;
{

BEOGTT SEenaXE JEnesd oded

G e L RN AT R S IR

SO

rerss v gt

CHAPTER 2

PREPARING A PROGRAM

2.1 GENERAL

The Pascal source program is usually created by the CRT Text Editor, using the
language constructs as defined in the publication entitled "Pascal Programming
Structures for Motorola Microprocessors". The source program file is stored on
disk.

2.2 THE OPTION COMMENT

The Pascal source program may include options (Table 2-1) that affect the
Phase 1 source and object output, options that control runtime checks, and
miscellaneous options. The options are named in an option comment, which is
enclosed within braces (i.e., { }) or within the symbol pairs (* and *). A
dollar sign immediately follows the left brace or left symbol pair to identify

the comment as an option comment. The format of the option comment is:

{8%8, o0 88]
or
(*SXS,...,XS*)

where X is a capital letter corresponding to one of the options shown in
Table 2-1. The s is either a plus (+), a minus (=), or an equal (=) sign. A
plus assigns a TRUE value enabling the option; a minus assigns a FALSE value
disabling the option; and an equal assigns a non-Boolean value to the option.

Table 2-1 shows the default value assigned to each option at the beginning of
the program.

One or more options, separated by commas with no intervening spaces, may be
specified in the comment. The option comment may appear at any point in a
program at which a comment is normally allowed.

2.3 BACKUS-NAUR FORM

The syntax description in this manual uses a syntax known as Backus-Naur Form
(BNF). A brief description of pertinent symbols is included below. These
symbols and their meanings are:

< 2 The angular brackets " enclose a symbol, known as a syntactic
variable, that is replaced by one of a class of symbols it
represents.

| This symbol indicates that a choice is to be made. One of several
symbols separated by this. symbol should be selected.

[1 Square brackets enclose a symbol that is optional. The enclosed
symbol may occur zero or one time.

[]... Square brackets followed by periods enclose a symbol that is
optional/repetitive. It may appear zero or more times.

Operator inputs are to be terminated by a carriage return.

2-1

TABLE 2-1. Source Program Options

OPTION

DEFAULT
VALUE

MEANING

A=x

F=<£fn>

A=2

Ct+

where x has the value 1, 2, or 4. It specifies the number of
bytes to be used for integer arithmetic. In an integer
operation, both operands are converted to the largest of the
following: (1) the size of the lefthand operand, (2) the size
of the righthand operand, and (3) the size specified by the
A= option. For example:

{$a=2}
il:=i1+j1-k1;

The l-byte integer variables il and jl are both extended to 2
bytes prior to calculating their sum. The l-byte integer
variable kl is extended to 2 bytes before subtracting it from
the intermediate sum. The final answer is truncated to 1
byte and then assigned to il.

Integer constants will always be treated as if they had at
least the size specified by the A= option. For {$A=2}, the
constant 1 is treated as if it were 2 bytes in size.

Generate an intermediate code file during Phase 1l. If C- is
specified, an intermediate code file is not generated.
(Eliminating this file reduces the time necessary to generate
the listing and any errors.)

This combines the K and R options to (1) generate code to
perform runtime checks which verify that array indices and
subrange type variables are in range, and (2) include
statement numbers in the object code. The numbers relate to
executable units and are found on the source listing. If an
error condition occurs at runtime, the current statement
number is reported.

Page eject. Whenever this option is encountered in the
source program, the Phase 1 listing will advance to the top
of the next page. (This option has no default value, and no
plus or minus sign.)

where <fn> is the name of a VERSAdos file containing Pascal
source code. The option allows the compiler to process a
source file as if another file were included inline in the
source.

Immediately after the line which contains the F= option,
Phase 1 will obtain its input from the specified file. When
the end of the "included file" is encountered, Phase 1 will
return to the original input file.

The remainder of the 1line which follows the comment
containing the F= option must not contain any more text. Any
source text found there is ignored. An option comment may
contain only one F= option, and the included file may not
contain any F= options at all. Include files may not be
nested.

2-2

TABLE 2-1. Source Program Options (cont'd)

DEFAULT
OPTION VALUE MEANING

A typical use of include files is to contain all the global
declarations for a set of subprogram modules in one. For
example:

{$F=GLOBALS.SA,L- Include globals and turn listing off}

K K- Include statement numbers in the object code. The statement
numbers relate to executable units and are found on the
source listing. If an error condition occurs at runtime, the
current statement number is reported. NOTE: Each statement

number requires at least three additional bytes of object
code each time the executable unit counter is updated.

L L+ Generate a source listing on the Phase 1 listing file or
device.

1f L- is specified, a listing is generated only of lines
containing errors and the associated error messages.

0 o- Enter source statements as comments in the Phase 2 input.

P P~ Include statement numbers in the object code, but only at
function/procedure entry and exit points. If an error
condition occurs at runtime, the number displayed will
indicate in which function/procedure the error was detected.

R R- Generate code to perform runtime checks which verify that
array subscripts and subrange type variables are in range.

NOTE: Each range check requires seven additional bytes of
object code.

W W— Generate a warning during Phase 1 processing if non-
standard Pascal features are used. Standard Pascal comprises
only the language features proposed by Jensen and Wirth.

2.3.1 File Name Format

In the command line descriptions, some syntactic variables are replaced by disk
file names. A VERSAdos disk file name consists of six fields:

<volume name>:<user number>.<catalog>.<file name> .<extension> (<protect key>)

If any of these fields is omitted, the system will £ill them in with default
values, as follows:

a. If <volume name> is omitted, the volume specified at system logon, or in
the last session control USE command, or specified in the first command
parameter (overrides defaults) will be used.

b. If <user number> is not supplied, the user number supplied at logon, or
in the last USE command, or specified in the first command parameter
(overrides defaults) is the default.

2-3

c. If a default catalog has been supplied at logon, or with the USE command,
or specified in the first command parameter (overrides defaults), and
<catalog> is not specified, then the default catalog will be used. Any
{catalog> specified will override the default catalog. If a default
catalog has been specified and a null catalog is required, entering a '&'
(ampersand) as the <catalog> will produce a null catalog. If a default
catalog has not been specified and <catalog> is omitted, then a null
catalog will be used.

d. If <user number> and/or <catalog> is being specified, <file name> may be
omitted and will default to the file name specified by the first command
parameter.

e. If the <extension> field (or "suffix") is not supplied, a default will be

supplied. See command line descriptions in Chapters 3 and 4 for default
extensions.

f. If <protect key> —— 2- to 4-character (AA-PP) access protection code --
is not specified, it defaults to PPPP (any user may read or write to the
files). If only 2 characters are specified, they are assumed to be the
read code, and the write code defaults to public write (PP).

The following file names are equivalent if the last USE command specified VOL1
and the user logged on as user 3:

VOL1:3..TESTPROG.SA

3..TESTPROG.SA

TESTPROG.SA

TESTPROG (if default extension is .SA)

2.4 CROSS PASCAL ENHANCEMENTS

Compared to the current resident M6809 Pascal on the EXORciser development
system, the cross Pascal compiler offers a number of enhancements.

2.4.1 One- and Four-Byte Integers

One- and four-byte integers are now supported. Any integer variable declared in
the subrange -128..127 will be allocated one byte of storage. Variables of an
enumerated type with 128 or fewer enumerated constants will be allocated one
byte of storage. Any integer variable declared outside of the subrange
-32768..32767 will be allocated four bytes of storage. An integer operation may
utilize mixed sizes of integer variables (integer operands are automatically
converted to the size of the larger). Array indexing operations will be
converted to 2-byte integers as well as CASE statement indices.

The predefined type INTEGER will default to two-byte integers (due to the

s explosion of code size which results if 4-byte integers are used) . The
predefined constant MAXINT, however, is defined to be the largest 4-byte
integer, 2147483647. For example:

VAR
il: -128..127; {allocated 1 byte of storage}
i,i2: -integer; {allocated 2 bytes of storage}
i4: -maxint..maxint; {allocated 4 bytes of storage}

color: (red, orange, yellow, green, blue, indigo, violet);
{allocated 1 byte of storage}

BEGIN
i := il + 12 + i4; {il is extended to 2 bytes and then added to 1iZ2.
The sum is then extended to 4 bytes and added to
i4. The result is then truncated to 2 bytes and
stored in i}

2.4.2 A Option

If doing l-byte arithmetic, it is very easy to overflow. For example, the
expression il + jl1 - k1 may yield a legitimate l-byte value, but the
intermediate result il + jl may overflow into two bytes and cause an erroneous
final answer. Therefore, the A= option was implemented so that intermediate
overflow may be prevented. The A= option is a comment option (in that it can
only be specified in an option comment in the source) which specifies the number
of bytes to be used for integer arithmetic. The possible values are A=l, A=2,
or A=4 for 1-, 2-, or 4-byte arithmetic, respectively. Essentially, this means
that when doing an integer operation, both operands are converted to the largest
of the following: (1) the size of the left-hand operation; (2) the size of the
right-hand operation; and (3) the size specified by the A= option. For example:

{$A=2}
il := il + j1 - Kk1;

The l-byte integer variables il and jl are both extended to two bytes prior to
calculating their sum. The 1-byte integer variable kl is extended to two bytes
before subtracting it from the intermediate sum. The final answer is truncated
to one byte and then assigned to il.

Integer constants will always be treated as if they had at least the size
specified by the A= option. For {$A=2}, the constant 1 is treated as if it were
two bytes in size.

The default arithmetic size is two bytes, {$A=2}.

2.4.3 F Option

The F= option allows the compiler to process a source file as if another file
were included inline in the source. The F= option is a comment option and has
the following format:

{$F=<filename>}

Immediately after the line which contains the F= option, Phase 1 will obtain its
input from the specified file. When the end of the "included file" is
encountered, Phase 1 will return to the original input file.

The remainder of the line which follows the comment containing the F= option
must not contain any more text. Any source text found there is ignored. An
option comment may contain only one F= option; the included file may not contain
any F= options at all. Include files may not be nested. ,

A typical use of include files is to contain all the global declarations for a
set of subprogram modules in one. For example:

{$F=GLOBALS.SA,L- Include globals and turn listing off}

2.4.4 string Functions

The string functions as described in Pascal Programming Structures for Motorola
Microprocessors are now implemented. Recall that on the M6809, strings are
implemented as a sequence of up to 254 ASCII characters preceded by a current
length byte. The string functions differ slightly from the string functions as
implemented for the M68000 Resident Pascal Compiler with regard to error
handling and boundary conditions. The following remarks describe the M6809
implementation.

CONCAT(sl1,S2,...,5n) Return a string which is the concatenation of the strings
sl, s2, ..., Sn. If the result is longer than 254
characters, the string 1is truncated with no error
indication given.

COPY(s, j, len) Return a substring of s, starting at position j, and of
length len. If j is outside the range l..current_length,
then the null string is returned. If beginning at position
j, there are not len characters left in the string, the
remainder of the string is returned.

DELETE(s, Jj, len) Return a string which is the string s with the characters
starting at position j, for a length len, deleted. If j
is outside the range l..current length, then the string s
is returned. If beginning at position j, there are not
len characters left in the string, the remainder of the
string is deleted.

INSERT(sl, s2, j) Return s2 with sl inserted into it starting at position j.
If j is 0, return s2 unmodified. If j is greater than the
current size of s2, concatenate sl onto the end of s2. If
the result is longer than 254 characters, truncate the
string.

6

LENGTH(s) Return the current length of the string s.

POS (sl1,s2) Return the position of the first occurrence of the string
g2 in the string sl. Return 0 if s2 does not occur within
sl.

2.4.5 Real Numbers

While Phase 1 can process real numbers and floating point operations, and Phase
2 can generate runtime library calls to perform the floating point calculations,
there are NO floating point routines currently implemented in the runtime
library. The user who wishes to perform floating point calculations will have
to supply a set of routines compatible with the calling sequences utilized by
Phase 2 of the compiler. Chapter 8 on floating point routines describes the
required interface.

2-7/2-8

CHAPTER 3

COMPILING A PROGRAM

3.1 GENERAL

A Pascal source program prepared by the user must be processed by the compiler
to produce a relocatable object file, from which a transportable S-record module
can be created.

The M6809 Pascal Compiler, referred to as the "“compiler", consists of two
programs. The first of these, Phase 1 of the compiler, is invoked using the
XPAS09 command. When the first phase completes, the user activates Phase 2 via
the XPAS092 command. The output produced by Phase 2 must be processed by the

Cross Linkage Editor, described in Chapter 4 of this manual. The resulting
S-record module is ready to be downloaded and run.

3.2 COMPILER PHASE 1

Phase 1 processes a Pascal source program, checking the syntax of each statement
it encounters. If any errors are detected, they are brought to the attention of
the user. These errors should be eliminated by editing the source program to
correct illegal statements. Phase 1 should again be invoked to compile the
modified program. When no errors are reported, Phase 1 processing is complete.

3.2.1 Phase 1 Output

Phase 1 of the compiler produces two types of output. First, it generates an
intermediate file which is used to produce the relocatable object file from
Phase 2. This file is of no value if errors were detected during Phase 1
processinge.

Second, it produces an optional listing of the source program containing error
codes along with other useful information. When an error is detected, a line is
added to the program listing containing the phrase "**ERROR ——" followed by the
line number of a previous error, or "0" if this is the first error. Also on
this line appears an error code positioned beneath the symbol that was being
processed when the error was discovered.

Each line of the source listing file contains the following fields:

LINE Source program line number. Up to five digits may appear in this
field.
LoC LOC stands for location. If enclosed in parentheses, this field

contains the offset in the data section of the first variable
declared in this statement; otherwise, this field contains an
executable unit number, roughly corresponding to a statement
number. If an error condition occurs while the program is running
and a debug option (D, K, or P) was selected, the executable unit
number of the statement being processed will be reported to
indicate the point of failure.

53=1

LVL LVL stands for level. Level numbers indicate the static structure
of a program. The main program is at level O. A level 1
procedure is contained in the main program and in no other
procedure. A level n procedure is contained by procedures at
level 0 through n-l1. Level numbers are useful when determining
the scope of variables or procedures.

B B is an abbreviation for block beginner. A block beginner is one
of the following symbols: BEGIN, REPEAT, or CASE. When one of
these keywords is encountered, the B level is incremented. If
multiple keywords that increase the B level occur on one line, the
level corresponding to the first beginner is printed.

E E stands for block terminator. A block terminator is either of
the symbols: END or UNTIL. An END will match either an earlier
BEGIN or a previous CASE symbol. An UNTIL is always associated
with an earlier REPEAT. The E level is decremented when a block
terminator is processed. If multiple block terminators are
encountered in a line, the level of the last block terminator is
printed.

Block levels are described by increasing letters of the alphabet.
If a block beginner does not appear in a line, its B field
contains a dash (-); if no block terminator is found on a line,
its E field is also a dash. The B and E fields enable the user to
quickly determine the block structure of a program. A common
error is to fail to provide a matching block terminator for each
block beginner. Often an examination of these fields will
pinpoint the location of the error.

The remaining field contains a copy of the source statement,
truncated to the current line length. No automatic formatting of
source statements is performed.

At the end of the listing, a summary of the compilation is provided. A count of
syntax errors, warnings, lines of source, procedures, and P-codes (intermediate
code instructions) is given. If any errors or warnings occurred, the line
number of the last error is listed.

An example of a source program listing containing three errors is shown in

Figure 3-1. This figure shows how lines containing errors are chained together
and also illustrates the other fields described above.

K o

Line Loc Lev BE M6809 Cross Pascal 1420 FIB +SA 02/16/83 12314314

1(0) 0)--

24 -4) 0)-- PROGRAM fibonacci{output)s

EX -4) 0)--

4t -4) 0)-- VAR

St -10) O)-- asbeis integers

6t =10 0=~

¢ 0) 1)-- PROCEDURE fib{VAR Xxey: integer)s

8¢ 0) 1)--

9(0) 1)-- VAR

10¢ -2) 1)=-- temp: integers

11¢ -2) 1)=--

12 1 1)A- BEGIN (fib)

13 2 1)-- tmp = yi { Compute the next Fibonacci 2

=%Error-- o*% ~104

14 3.k)=- y 3= y + x3 { number (F{n=2)+Fln=1)) => (F(n=-1)eF(n)) 2}
15 4 1)-- X 3= temp

16 1)-A END: (fib)

17 1)=--

18 5 0)A- BEGIN {fibonacci)

19 6 0)-- a 3= 03 ¢ Ilnitialize a and b)
20 7..:0)== b = 1%

21 8 0)B- FOR i s= 2 TO 10 THEN BEGIN

s*Error-- 13%% ~6 AS4

22 9 0)-- fiblaeb)s
23 10 O)-- writelntoutputeiz3ebs5)
24 0)-8B END

25 0)-A END. {(fibonacci)

%%9¢ 3 Error(s) and No Warning(s) detected
sas% Last error line was 21
ss3% 25 Lines 1 Procedures

ssss 3 Pcode instructions

FIGURE 3-1. Pascal Listing with Errors

3.3 COMPILER PHASE 2

Phase 2 of the compiler processes the intermediate code produced by Phase 1 and
generates an object module that can be linked to create an S-record module.
This phase collects intermediate code until it encounters a store operation, a
branch statement, or the destination of a branch statement. It then generates,
in the form of a relocatable object module, the machine code equivalent of the
corresponding group of intermediate instructions. One object module is
generated for the entire input file.

As code is generated, optimization is performed. Intermediate code is scanned
and, when possible, two or more consecutive instructions are replaced by an
equivalent single intermediate code instruction. Code is created by individual
code generators, one for each possible machine instruction. These communicate
with each other to ensure that they collectively form instructions that are
optimized in quantity, memory requirements, register usage, and number of memory
references.

3.3.1 Phase 2 Output

Phase 2 of the compiler produces an object file and, optionally, a pseudo
assembly listing. The listing is not needed normally, and is suppressed unless
the user specifically requests its

33

On completion of code generation, Phase 2 will output a message to the user's
console. The message states the size of the code segment produced and an
estimate of the data segment. The data segment is the sum of the following:
the size of the global data segment, 1.5 times the sum of the largest data
segments allocated for each of the static levels (1-7), 4K (4096) for the heap
if the NEW procedure was used, and 29 bytes for the runtime maintenance area. If
compiling a subprogram module, the data segment calculation includes only 1.5
times the sum of the largest data segments allocated for each of the static
levels.

3.3.2 Object File Description

The compiler produces a relocatable object file that is compatible with the
8-bit cross linker. The object module contains information which, when
extracted by the linker, makes possible the combination of separate programs and
the inclusion of necessary runtime routines. The location of every level 1
procedure is recorded in the object file in an external definition record. A
list of all modules referenced by the program, either explicitly requested by
the user or determined by Phase 2 to be needed, is included in an external
reference record.

The code itself is also stored in the object module. Phase 2 creates code that
is position independent, as well as relocatable. The linking process will
preserve the position-independent attribute so that Pascal programs may
theoretically be loaded into any memory address space.

3.3.3 Pseudo Assembly Listing Description

If a Pascal program does not perform as expected, debugging may be necessary.
The most convenient way to perform this activity is by including facilities in
the program to inform the user of its progress, reporting the values of critical
variables at appropriate times. Occasionally it might be desirable to conduct
debugging of individual machine instructions rather than source statements. The
pseudo assembly listing greatly facilitates this activity.

This listing contains the following information:

a. Pascal source statements are present if the O option was selected when
Phase 1 processing was requested. To the right of the source statement
appears a statement number that matches the statement number appearing at
the beginning of each line of the Phase 1 listing. This makes it easy to
find a specific source statement in the pseudo assembly listing.

b. Between source statements appears a representation of the code that was
stored in the object file. This appears in a similar format to that
which would be produced by an assembler. Machine code for instructions
does not match exactly what was actually put into the object file,
because fixups of instructions containing forward references and

instructions requiring linkage for completion cannot be shown in tinal
form.

c. An assembly language instruction equivalent to the machine code
representation appears on the right side of the pseudo assembly listing.
This code may serve as a basis for users desiring to modify code
generated by Phase 2, but will not, in general, assemble correctly.

34

3.4 RUNNING PHASE 1

Phase 1 of the compiler is loaded and run in response to the following VERSAdos

command line:

XPAS09 <source>[,[<intermediate>],[<list>]][;<options>]

where the syntactic variables are defined as follows:

source

intermediate

list

options

the source file containing the Pascal program. If not
specified, the filename extension will default to .SA.
Multiple source files may be specified provided they are
separated by slashes (/).

the destination file which will contain the intermediate
representation of the program. If not specified, the
filename will default to the first <source> filename but with
extension .PC.

the listing file or device. If not specified, the filename
will default to the first <source> filename but with
extension .PL.

various flags for controlling the generation of the inter-
mediate representation or the listing. Each option is a
single letter possibly preceded by a minus sign or followed
by an equal sign and integer value. In the latter case, a
comma is used to separate the integer value from subsequent
options.

OPTION DEFAULT MEANING

c c Produce intermediate code. -C would
suppress the intermediate file.

D =D Debug mode. Generate code to check for
values and indices out of range. Also
generate code to maintain the executable
unit counters. Default (-D) is non-debug

mode.

K -K Generate code to maintain the executable
unit counters. Default (=K) is no counter
maintenance.

I L Produce a source listing. -L would

suppress the 1listing file (except for
lines containing compile time errors.

0 -0 Include the source statements in the
intermediate file for Phase 2 listing
purposes. Default (-0) excludes source.

P -P Generate code to maintain the executable
unit counters but only at procedure/
function entry and exit points. Default
(-P) is no counter maintenance.

3-5

Z=n

Z=36

Generate code to check for values and
indices out of range (runtime checking).
Default (-R) is no checking.

Warn if non-standard Pascal features are
used. Default (-W) is no warnings.

Set stack/heap (symbol table) size used
by compiler to nK. Value of n must be at
least 36 (the default value, 36K bytes).
The default value will be adequate for
compiling most programs. However, some
larger programs may cause Phase 1 to
abort with error 1008, 1010, or 10ll.
In such cases, Phase 1 should be executed
with a larger Z= option.

In the following example, all of these command lines are equivalent:

XPAS09
XPAS09
XPAS09
XPAS09

TESTPROG; W
TESTPROG, TESTPROG, TESTPROG; W

TESTPROG .SA, TESTPROG . PC, TESTPROG . PL ;W
TESTPROG, .PC, .PL;W

All of the above commands direct Phase 1 to process a source program contained
in TESTPROG.SA and produce intermediate code in TESTPROG.PC and a listing in
TESTPROG.PL. The option causes a warning at every occurrence of a non-standard

Pascal feature.

A common form of the command is:

XPAS09

TESTPROG, ,#;-L

This command compiles TESTPROG.SA, creates intermediate code in TESTPROG.PC, and

displays only lines containing compile time errors and associated error messages
on the console screen.

3-6

3.5 RUNNING PHASE 2

Phase 2 of the compiler is invoked with the following VERSAdos command :

XPAS092 <intermediate> [, [<object>] [,<1list>]] [;<options>]

where the syntactic variables are defined as follows:

intermediate

object

list

options

the file containing the intermediate representation of the
Pascal program. If not specified, the filename extension
will default to .PC.

the destination file which will contain the 6809 relocatable
object code. If not specified, the filename will default to
the <intermediate> filename but with extension .RX.

the 1listing file or device. If not specified, the file-
name will default to the <intermediate> filename but with
extension .LS. However, the default value for Phase 2 is not
to produce a listing.

various flags for controlling the generation of the listing.
Each option is a single letter possibly preceded by a minus
sign or followed by an equal sign, value, and comma.

OPTION DEFAULT MEANING

A -A Include assembly code in the listing.
Default (-A) suppresses the assembly code.

H -H Include the hexadecimal machine code
corresponding to the assembly code in the
listing. Default (-H) suppresses the
machine code.

S -S Include the source as assembly comment
lines in the listing (when the O option
was enabled in Phase 1). Default (-S)
suppresses the source.

L -L Produce - a pseudo-assembly listing
(equivalent to specifing AHS options) of
the generated code. Default (-L)
suppresses the listing.

N -N If the listing is enabled, then produce a
narrow, 80-column listing. Default (-N)
enables a wide, 132-column listing.

Z=n Z=32 Set stack/heap size used by Phase 2 to nkK.
Value of n must be at least 32 (the
default value, 32K bytes). The default
value will be adequate for code generation
for most programs. However, certain
programs may cause Phase 2 to abort with
error 1008, 1010, or 10l11l. In such cases,
Phase 2 should be executed with a larger
Z= option.

=7

Since the listing file output by Phase 2 is normally not needed, it is
suppressed by default. For example:

XPAS092 TESTPROG

This command processes the intermediate code in TESTPROG.PC:0, creates an object
module in the file TESTPROG.RX, and produces no listing.

Another example shows how a listing is produced:

XPAS092 TESTPROG; LN

.

The above example processes TESTPROG.PC, creates a relocatable object module in
TESTPROG.RX, and generates an 80-column listing in TESTPROG.LS.

3-8

CHAPTER 4

RUNNING THE CROSS LINKAGE EDITOR

4.1 GENERAL

Relocatable object modules generated by Phase 2 of the compiler are processed by
the 8-bit Cross Linkage Editor (referred to as the "linker") to produce a
transportable S-record module. A Pascal program requires the linker because:

a. Every Pascal program refers to runtime routines which reside in the
Runtime library,

b. If a program is to be combined with one or more subprograms that were
compiled separately, the linkage between modules must be constructed, and

c. If a Pascal program calls a procedure or function written in assembly
language, the load module must include object modules produced by the
M6809 Cross Assembler, XASM09.

In all these cases, the linker is required to assign memory space to each
required object module, enable intermodule communication, and create an absolute
load module in S-record format.

4.2 RUNTIME ROUTINES

The Pascal Runtime library (PASO9LIB) provides certain standard functions that
may be optionally used to perform general services. A group of functions and
procedures is also provided, which interfaces the Pascal program with the MDOS
operating system to provide for input or output (other environments are
considered in Chapter 79. A routine is provided to establish the environment
required by a Pascal program. Some frequently requested code sequences that
perform such activities as manipulating strings or vectors are implemented as
runtime routines to reduce program code size.

Whenever a reference is made to one of the runtime routines, an external
reference record is produced by the compiler as part of the object module. The
linker will include only referenced runtime routines in the S-record module.

4.3 SEPARATE COMPILATION

Pascal supports separate compilations so that the user may group one or more
procedures or functions, utilizing only local variables, into a subprogram. The
linker can combine as many subprograms as desired. The locations of all level 1
procedures are made known to the linker by external symbol definition records
within the object module. The linker can thus resolve references between the
program and subprogram or between two subprograms.

4-1

4.4 ASSEMBLY LANGUAGE PROCEDURES

Pascal permits the user to refer to procedures or functions written in assembly
language. If such routines are required, they should be written as shown in
Chapter 5. The linker will enable any Pascal program or subprogram to utilize
assembly language routines.

4.5 STACK AND HEAP USAGE

While a Pascal program is running, two types of memory allocation are used: a
stack and a heap.

Variables that are global or local and appear in VAR declarations are allocated
space on the stack. Global variables -- i.e., those declared in the main
program —-— occupy space for the duration of the program run. Local variables
are allocated stack space when the procedure or function in which they are
declared is entered, and relinquish their space on the stack when their
containing routine is exited.

Variables appearing in a NEW statement are not stored on the stack, but occupy
space on the heap. An appropriate amount of space is allocated on the heap
whenever a NEW statement is processed during program execution. This space is
not relinquished until a DISPOSE statement is executed.

The stack is built in the highest address of the allocated data segment and
grows toward lower addresses; the heap grows from lowest addresses toward higher
addresses. The stack and heap may share the data segment space in any ratio,
but their total space requirements must not exceed the total memory available or
the program will generate a stack/heap overflow error code and abort.

4.6 PASCAL PROGRAM MEMORY ORGANIZATION

The M6809 has a maximum of 64K bytes of address space, part of which is possibly
occupied by an operating system, monitors, ROM's, etc. The amount of memory
available to the user is divided into three sections: the program section, the
data section, and the stack/heap section.

The program section, called PSCT, contains the Pascal object modules, the Pascal
library routines, and possibly user-supplied assembly language routines. This
program section is more fully described in the Macro Assemblers Reference
Manual.

The data section, called DSCT, contains only the data areas, if any, that are
required by any user-supplied assembly language routines. Neither the Pascal
object modules nor the Pascal library routines require any data area, because
all of their variables are allocated on the stack. The Pascal initialization
routine, however, does allocate one unused byte in a named-common DSCT section,
merely to mark the highest address in the data section. The basic concept of
PSCT and DSCT is to separate the code and data sections for a ROM/RAM
environment (see the Macro Assembler Manual for more details).

The stack/heap section is allocated from the area of memory above the data
section (i.e., at higher addresses), which is unassigned by the linker. It
contains the Pascal global and local variable space, the runtime maintenance
area, and the dynamic-variable allocations area (NEW variables).

4-2

The data/stack/heap section (RAM) may be located either above or below the
program section, although a smaller load module results from locating the

= data/stack/heap section above the program section. The two possible load maps
are shown in Figure 4-1.

SFFFF SFFFF

System Routines System Routines

I__.
System Routines System routines |

I I I
I I I
I I I
| I |
| I |
I | r—w
Unassigned | | Program Section |
Memory I I I
4 I I I
I | I
| Available for | | |
| Stack/Heap | | Unassigned |
| I [Memory |
l | | | >Load
I I I | (Module
| | | Available for |
| | | Stack/Heap |
— I | I
Data Section		
		Load I
	[Module	
Program Section		Data Section
I I I		
I I I		
I | |

$0000 $0000

(@) (b

FIGURE 4-1. Pascal Load Module Format

4.7 INVOKING THE CROSS LINKAGE EDITOR

The Cross Linkage Editor is an interactive program which creates an S-record
module based on information supplied by the user. The following information is
required:

. The file names of the relocatable object modules which are to be included
in the S-record module.

. The file names of any library routines which are to be searched to satisfy
external references.

. The file name of the resulting S-record module.
. The starting address of the program section.
. The starting address of the data section.
. The format of any linker generated listings.
To allocate memory, the Pascal initialization routine must know the upper bound

of the stack/heap. This information is also supplied by the user at S-record
module creation time.

NOTE

The starting address of the Pascal stack/heap 1is not directly
specified by the user during load module creation. The stack/
heap is allocated memory starting immediately above the end of
the data section -— an address which is usually unknown until
after a load map is generated. To determine the end of the data
section, the Pascal initialization routine allocates one unused
byte in a named-common section in DSCT called .ENDD. Accordingly,
_ENDD must then be the last module allocated memory in DSCT for
the end of the data section to be known. The linker will auto-
matically locate all named-DSCT common sections at the top of the
data section in the order in which they are encountered during
the load sequence. Therefore, .ENDD must be the last named-DSCT
common encountered by the linker, which implies that all user
routines which access a named-DSCT common must be loaded before
the Pascal runtime library. If this requirement is not followed,
then the Pascal stack/heap will overwrite portions of the user
data section.

The linker is invoked by the following VERSAdos command:

=XLINK <object>[,[<absolute>][,<list>]];A[<options>]

where the syntactic variables are defined as follows:

object

absolute

list

options

the file containing the M6809 relocatable object code. If not
specified, the extension of .RX is assumed. Multiple object file
names may be specified provided they are separated by slashes

(/)

the destination file which will contain the M6809 absolute
S-records. If not specified, the filename will default to the
<object> filename but with extension .MX.

the listing file or device. If not specified, the listing will
be directed to the user's console. If a filename is specified,
the extension will default to .LL.

various flags for controlling the generation of the 1listing.
Each option is a single letter possibly preceded by a minus sign
or followed by an equal sign, value, and comma. Some useful
options are:

OPTION DEFAULT MEANING

A -A Accept user commands from the command input
device (the user's console). NOTE: This
option must be specified.

H -H List information found in the header record of
each object module. Default (-H) suppresses
this listing.

T -1 List the command line and all user commands.
Default (-I) suppresses this listing.

L=<£n> -L Search the specified library files at the end

of pass 1. Default (-L) suppresses this
search. To search the Pascal runtime library,

the following option is specified:
L=PASO9LIB.RX.
M -M List a map of the resulting absolute module.

Default (-M) suppresses this listing.

X =X List the external definition directory.
Default (-X) suppresses this listing.

Z=n 2=35 Set stack/heap size used by 1linker to nK.
Value of n must be at least 35 (the default
value, 35K bytes). The default value will be
adequate for 1linking for most programs.
However, certain programs may cause the linker
to abort with error 1008, 1010, or 10l1l. 1In
such cases, the linker should be executed with
a larger Z= option.

4-5

The A option causes the cross linker to accept additional commands from the
user. This is necessary in order to specify the stack/heap bounds of the user's
program, as well as the order of allocation and starting address for DSCT (the
data section) and PSCT (the program (code) section). The following user
commands are required to successfully link an M6809 Pascal program (consult the
8-bit Cross Linkage Editor on EXORmacs Development System User's Guide
(M68XLINK) for more information):

LOCATE PSCT,DSCT <address>

This command causes the program to be allocated memory, below the data,
starting at location of <address>. An <address> of $2000 allows the
program to run with MDOS resident. I1f MDOS is not required (for I/O0 for
example), then the allocation address can be set as the user desires.
Recall that the runtime initialization routine is going to allocate a
1-byte common section in DSCT which is going to be the lower bound of the
stack/heap.

DEF .DHIGH <address>

This command defines the externally-referenced symbol .DHIGH to have the
specified value. This value is going to be the upper bound of the
stack/heap.

DEF .SIZE <value>

This command defines the value for the externally-referenced symbol .SIZE.
If the value is non-zero, then the value specified for .DHIGH is ignored
and the initialization routine will size memory, allocating all RAM above
the common section which marks the end of the data section to the
stack/heap.

IN <filename>

This command causes other files to be included in the absolute S-record
module.

LIB <filename>

This command causes the indicated library file to be searched to satisfy
external references.

END

This command terminates the user's input.

EXAMPLES :

=XLINK TESTPROG/ASM1/ASM2;AML=PASO9LIB
ILOCATE PSCT,DSCT $2000

\DEF .DHIGH SDFFF

I\DEF .SIZE 0

1END

These commands link the object module TESTPROG.RX with PASO9LIB.RX, ASMIL.RX, and
ASM2.RX; creates the absolute S-record module TESTPROG.MX; and generates a load
map on the user's terminal. The program section is allocated memory starting at
$2000. The data section is allocated memory immediately above the program

section. The stack/heap is allocated memory from the end of the data section to
SDFFF.

=XLINK TESTPROG;AL~PASO9LIB
{LOCATE PSCT $2800

1 LOCATE DSCT $4000

|DEF .DHIGH $4FFF

I\DEF .SIZE O

{END

This command links the object module TESTPROG.RX with PASO9LIB.RX and creates
the absolute S-record module TESTPROG.MX. No load map is generated. The program
section is allocated memory starting at $2800. There is no data section, since
only Pascal modules are included. The lower bound of the stack/heap is $4000.
The upper bound of the stack/heap is S$S4FFF.

4.8 DOWNLOADING TO M6809

The final step is the transfer of the M6809 absolute S-records contained in a
VERSAdos file to an M6809 for execution. If an EXORciser-based M6809 is
available, then a simple way to accomplish the transfer is by means of a floppy
disk. The S-record files are first copied to a floppy diskette, using the
VERSAdos COPY command. Then, on the EXORciser, the VERSAdos diskette file is
converted into an MDOS-loadable file by the following commands:

=VMCOPY <VERSAdos S-record filename>[,<MDOS S-record filename>]
=EXBIN <MDOS S-record filename>[,<MDOS loadable filename>]

where the VERSAdos diskette must be in drive 1 and the MDOS diskette in drive 0.
The VMCOPY command converts a VERSAdos file into an MDOS file. The <VERSAdos
S-record filename> must include user number, filename, and extension. The MDOS
filename will default to the same name but with extension .SA, if not specified.
The EXBIN command converts the S-record file into an MDOS-loadable file; the

extensions, if not specified, default to .LX for the input and .LO for the
output.

NOTE

VMCOPY is not included in the standard MDOS set of utilities,
but is available from Motorola Microsystems Field Service.

An alternate method for downloading is to utilize the TRANSFER command under

VERSAdos. This method is described in the utilities chapter of the VERSAdos
System Facilities Reference Manual, M68KVSF .

4-7

4.9 THE PASCAL RUNTIME ENVIRONMENT

Program execution begins in the initialization routine at the address specified
by the external label .INIT. The initialization routine performs three
functions:

1. allocation of the stack/heap area,
2. initialization of the runtime maintenance area, and
3. initialization of the registers.

The externally-known variable .INITS in the initialization routine defines the
address of a six-byte area in which the size-memory flag, the start-of-stack
address, and the end—of-stack address are stored. In particular:

LINITS+1: Size-memory flag (.SIZE)
LINITS+2: Lower stack/heap bound (address of .ENDD)
LINITS+4: Upper stack/heap bound (.DHIGH)

These locations are initialized by the 1linker and are utilized by the
initialization routine in the allocation of the stack/heap. It is possible to
patch these locations and thus modify the stack/heap location after the S-record
module has been created.

Since the Pascal stack/heap is allocated between .ENDD and .DHIGH (if .SIZE is
not set), the program section must reside either above .DHIGH or below .ENDD.
If the size-memory flag is set, the initialization routine will size memory
starting from .ENDD and allocate all of available RAM. to the stack/heap. In
this case, the program section must reside either below .ENDD or in ROM.

The runtime maintenance area (RMA) resides at the low address end of the
stack/heap area. To facilitate access, the RMA is aligned on a page boundary,
and the direct page register is initialized to the most significant byte of the
RMA address. The direct mode of addressing is utilized in all RMA accesses. A
map of the RMA is shown in Figure 4-3. A description of the RMA is provided in
Table 4-1.

The heap begins immediately above the RMA, and grows upward toward the stack.
The area of memory from the end of the data section (.ENDD) to the next page
boundary (the RMA) is not used by any Pascal program.

The stack starts at the high address end of the stack/heap area and grows
downward toward the heap.

Certain of the M6809 registers are assigned initial values. These registers are:

S The Pascal stack. Initial value is .DHIGH+l or first non-RAM byte,
depending upon the value of .SIZE.

Y Global data segment pointer. The value is the initial S-value minus
six (S-6).

DP Most significant byte of the runtime maintenance area address.

Upon completion, the initialization routine branches to the externally—-defined
symbol .ENTRY, which is the main program entry point. The initial entry code
initializes the display level-zero data segment pointer and the current data
segment pointer, and allocates the required area on the stack for the global
data segment.

4-8

Offset from DP register

hex

1B
19
17

15
14

12

10

27
25
23

21
20

18
16
14
12

10

RMA PHYSICAL ADDRESS

FREELIST HEADER NODE

HEAP POINTER

RESERVED

STATEMENT COUNTER

CURRENT

DISPLAY

POINTER

DISPLAY

LEVEL 7

POINTER

DISPLAY

LEVEL 6

POINTER

DISPLAY

LEVEL 5

POINTER

DISPLAY

LEVEL 4

POINTER

DISPLAY

LEVEL 3

POINTER

DISPLAY

LEVEL 2

POINTER

DISPLAY

LEVEL 1

POINTER

DISPLAY

LEVEL 0

POINTER

FIGURE 4-3.

Pascal

Runtime

Maintenance Area

TABLE 4-1. Pascal Runtime Maintenance Area Description
DP
CONTENTS OFFSET DESCRIPTION

Display Level 0 Pointer 0 Pointer to main program's global data area.

Display Level 1 Pointer 2 Pointer to current level one procedure's
data area.

Display Level 2 Pointer 4 Pointer to current level two procedure's
data area.

Display Level 3 Pointer 6 Pointer to current level three procedure's
data area.

Display Level 4 Pointer 8 Pointer to current level four procedure's
data area.

Display Level 5 Pointer 10 Pointer to current level five procedure's
data area.

Display Level 6 Pointer 12 Pointer to current level six procedure's
data area.

Display Level 7 Pointer 14 Pointer to current level seven procedure's
data area.

Current Display Pointer 16 Pointer to the currently executing
procedure's data area.

Statement Counter 18 Statement number of the currently executing
Pascal statement if the D, K, or P option
was enabled.

Reserved 20

Heap Pointer 21 Pointer to the current top of the heap
area.

Freelist Header Node 23 Pointer to the start of the freelist,
followed by a double-byte of zeros.

RMA Physical Address 27 Address of the start of the RMA.

4-10

CHAPTER 5

ASSEMBLY ROUTINE LINKAGE

5.1 GENERAL

An assembly language routine may be called externally by a Pascal program using
normal Pascal argument passing. Such a routine may:

a. Perform a function not available in Pascal -- e.g., data manipulation or
1/0 not provided in the System Library, or some mathematics not supported
by Pascal.

b. Optimize some code to be used repetitively in a real-time environment.
The Pascal compiler does optimize, but a user-written assembly language
routine may be shorter and faster.

5.2 PROGRAM PREPARATION

There are two requirements which must be satisfied in order to include an
assembly language subroutine in a Pascal program. The first is to declare the
external assembly language routine in the Pascal program. This is done by
declaring a level 1 procedure or function — i.e., one contained only by the
main program, using the forward directive. A good place for these declarations
is prior to the first non-external procedure heading.

For example:

FUNCTION SUMTHREE (I,J,K:INTEGER) :INTEGER; FORWARD;

The external assembly language subroutine may then be called just as any Pascal
procedure or function.

The second requirement concerns the file which contains the assembly language
routine. This file must have an entry point, which has been declared external
with an XDEF, with the same name as the procedure or function in the Pascal
program. The entry point would normally be declared in PSCT or the program
section of the assembly language routine.

5.3 CALLING A ROUTINE

Calling an assembly language routine is identical in format -- and its runtime
requirements are identical in system usage —- to a regular function or procedure
call in Pascal. Parameters, for example, are placed on the top of the stack,
beneath the return address, in the order they are declared -- the first
parameter is stacked first and the last parameter is nearest the top of the
stack. If the assembly language routine is declared a function, the space for
the return value is below the first parameter on the stack.

5-1

For example, given the declaration and call in the following Pascal program
fragment:

FUNCTION SUMTHREE (I,J,K:INTEGER):INTEGER; FORWARD;
BEGIN
A:= SUMTHREE(3,5,7);

the stack would look as follows upon entry to the assembly language subroutine
named SUMTHREE:

I; 2 bytes;
value = 3

FUNCTION VALUE
SUMTHREE; 2 bytes;
value is undefined

TOP OF STACK ——————=>| |
| RETURN ADDRESS | low address
| 2 bytes I :
| I

POSITIVE | |
OFFSETS | FORMAL PARAMETER |
FROM | K; 2 bytes; |
STACK | value = 7 |
POINTER | |
| |

! | FORMAL PARAMETER |

i | J; 2 bytes; I

i | value = 5 |

! I |

' I |

v | FORMAL PARAMETER |

| |

| |

| |

| |

| |

| I

| |

| |

high address

The size of parameters depends on the type.

A VAR parameter passes a two-byte address of the actual parameter, which can be
used to reference the actual parameter via indirection. A value parameter
passes the value of the expression which corresponds to the formal parameter.

Boolean parameters occupy one byte on the stack. This byte has the value of one
for true and the value of zero for false.

Character parameters use one byte on the stack. This byte has the value of the
ASCII code for the character passed in it.

Integer parameters occupy one, two, or four bytes on the stack. They are stored
as two's complement numbers.

Set parameters require eight bytes on the stack, with the byte nearest the top
of the stack containing bits 63-56 and the byte farthest from the top of the
stack containing bits 7-0.

Arrays and records occupy a number of bytes equal to their length.

Strings should always be passed to assembly language routines as VAR parameters,
due to the complexity of determining their actual size on the stack.

Pointers require two bytes on the stack and they contain the address of the
variable they reference.

The assembly language subroutine is responsible for preserving the value of
registers DP and Y during its execution. It is also responsible for removing
all parameters passed to it by the Pascal program and for storing a value in the
return value location if the subroutine was declared as a function.

The value of the Y register may be of use to the assembly language routine,
since it points to the base of the global variable area. To reference a variable

in this area, a negative displacement from the register must be used.

The assembly language subroutine is free to use the space between the top of the
stack and the top of the heap for local data storage. The address of the top of
the heap is kept in the RMA at offset 21 (see Figure 4-3).

If the stack pointer ever contains an address that is less than the address of
the top of the heap, a stack/heap overflow condition has occurred. i
stack/heap overflow has occurred, then both the stack and the heap may contain
invalid data.

Control may be returned to the Pascal program by means of either a return from
subroutine instruction or a jump indirect through the X- register which contains
the return address. No matter which method is used, it is up to the assembly
language subroutine to adjust the stack so as to remove the passed parameters.
If the assembly language routine returned a function value, then the stack
pointer should point to that location on the stack where the space was reserved
for the return value prior to the call. If the assembly language routine did
not return a function value, the stack pointer should point just below where the
first parameter was pushed on the stack.

Following is a picture of the stack for the SUMTHREE routine, seen earlier, just
before the return to the Pascal program:

TOP OF STACK ON ENTRY ———=> | low address

TOP OF STACK >
AT EXIT FROM FUNCTION

FUNCTION VALUE

SUMTHREE; 2 bytes;
value = 15

high address

5.4 ROUTINE LINKAGE

An assembly language routine is linked with a Pascal program by means of the
8-bit Cross Linker.

5.5 SAMPLE PROGRAM

The following example demonstrates the linkage between a Pascal program and an
assembly-language routine.

The assembly language routine (see paragraph 5.5.1) utilizes the MDOS system
call DSPLZ to output the contents of a text file buffer to the system console
without a carriage return. The routine refers to various fields in the file
pointer and the file descriptor, both of which are described in Chapter 7. The
MDOS I/0 Control Block (IOCB) is described in the MDOS User's Guide, as is the
MDOS system call DSPLZ. Note that it was necessary to reset the buffer pointers
(one in the file pointer and one in the file descriptor), since these are
accessed by other Pascal routines.

The Pascal program (paragraph 5.5.2) uses the assembly language routine to
prompt the user for input. The routine PROMPT performs essentially the same
function as the Pascal routine WRITELN, but without the closing carriage return.
Note that PROMPT was declared FORWARD in the program and that the compiler
recognizes that it was external.

5-4

5.5.1 Assembly Language Routine Listing

Motorola 46809 X-Assembler

?

P
P
P
P

O =W W e

P
P
)
P
o
[
P
p
p
P
[
P
p
P
P
P
A
A
A
P
p
28 P
P
P
P
[
]
4
P
P
p
P
P
P
4
P
-]
P
P
P
P
P
p

0000
0000
0000

0000
0002
0005
0007
000A
000C
000E
0011
0013
0016
0019
001C
001lE
0020
0022

s2xsxs TOTAL
sssxs TOTAL

0000
000C
oolo0

3420
10AE64
AEAS
10AE22
Cé04
ET84
AEAB10

ECA810
EOF804
€30001
EDA4
3560
3262
6EC4

ERRORS

WARNINGS

O R IR BECBE B K

CALL

* FILE
%

NXTPTR
10C8

10CD8BS
*

4
%
%
%
%
*
%
P

ROMPT

Q== 0
0== 0

1.10

PROMPT +SA 02/16/83 12330

PROCEDURE PROMPT (VAR FIL: TEXT)3

THIS ASSEMBLY LANGUAGE ROUTINE INTERFACES TO A PASCAL
PROGRAM AND FORCES WHATEVER IS IN THE BUFFER FOR THE
FILE POINTED TO BY FIL TO BE WRITTEN TO THE CONSOLE
WITHOUT A CARRIAGE RETURN.

NAM PROMPT
XDEF PROMPT

SYSTEM CALL MACRO

MACR

SWl1

FCB \O
ENDM

DESCRIPTOR OFFSETS

EQU 00 NEXT COMPONENT
EQU 12 ACTIVE 10CB
EQU 10CB+4 DATA BUFFER START ADDRESS

STATUS OF STACK

ENTRY: 0: RETURN ADDRESS
2: ADDRESS OF FILE POINTER
EXIT: NONE
PSHS Y SAVE GLOBAL POINTER
LDY 4eS ADDRESS OF FILE POINTER
LOX OsY ADDRESS OF NEXT CHAR IN BUFFER
LDY 24Y ADDRESS OF FILE DESCRIPTOR
LO8 e LCAD EOT
sT8 OeX APPEND EOT TO BUFFER
LOX 10CDBS,Y ADDRESS OF BUFFER
SCALL 12 OUTPUT BUFFER (DSPLZ)
LOD 10CD8BS »Y RESET BUFFER
STD (4,51 PCINTERS
ADDD #1
sTO NXTPTRY
PULS YoU GET GLOBAL PTR AND RET ADDR
LEAS 298 DISCARD PARAMETER
JMP 0.V RETURN
END

5.5.2 Pascal Program Listing

M6809

Cross Pascal 1.20 SORT «SA 02716783 13:21:38

{-

SCRT

This program demonstrates the iinking of a Pascal
program with an assembiy fanguage subroutinee.

The driver program simply asks for an array of numbers,
one by ones sorts the numbers in increasing numerical
ordery and prints the resuitse

An assembly language routine is used to prompt output
to the console without having to do a writeine This
allows for prompting for input and having the input
ertered on the same linee

AAAAAAAAAAAAAANAAM™

PROGRA

M sortlinputesoutput)s

CONST

TYP

VAR

maxearrayesize = 50003 {maximum array sizel)

€

indexerange = le..maxearraye¢sizes (range of indices into array)

number+array: ARRAY [index¢rangel] OF integer:

arrayesizes Oecemaxearrayesizes Cactual size of array)

RS L indexeranges:
temp: © integers
exchange: booleans

{indices into array)

{any exchanges?)

{Declare the needed assembly language routine as external)

PROCEDURE prompt (VAR fFil: text): FORWARDS

Assumed external
BEGIN {sort)

Line Loc Lev BE
1t 0) 0)--
2(0) 0)--
3 0) 0)--
&t 0) 0)=--
5¢ 0) 0)=-
&l 0) 0)--
Tt 0) 0)--
3¢ 0) 0)--
X 0) 0)--

10¢ 0) 0)=--
11(0) 0)=--
12¢ 0) O)=-
13¢ 0) 0)=--
141(0) 0)=~-
15¢ Q) 0)=-
161 0) 0)--
17¢ 0) 0)--
13¢ 0) 0)=--
19¢ -8) 0)=-~-
20¢(-8) 0)--
21¢ -8) 0)--
22t -8) 0)--
23¢(-8) 0)--
241 -8) 0)--
25¢ -8) 0)--
261(-8) 0)=-=
27¢ -8) C)--
28(-12008) 0)--
29(-10010) 0)--
30(-10014) 0O)--
31(-10016) 0)--
32(-10017) 0)=--
33(-10017) O)=--
34(-10017) O)~--
35(-10017) O)=-
361 0) 1)=--
37¢ 0) 1)--
ss%2 PROMPT
38 1 0)a-
39 0)--
40 0)8-
41 Q)=--
42 2 0)--
43 3 0)--
44 4 0)--
45 5 0)--
46 0)=--
47 6 0)--
48 0)=-
49 7 0l)C-
S0 0)--
51 8 0)0-
52 9 0)=--
53 10 0)=--
54 11 0)--
55 0)-D

REPEAT {loop for each array)

writelintoutput)s
writein{output)s
writefoutpute®Input size of array (0 to quit): ®*)3
prompt{output)s

readin(outputsarrayesizel: {get array size)

IF arrayesize > 0 THEN BEGIN

FOR | 3= 1 TO arrayesize DO BEGIN {(read numberss one by one)

writeloutputs®Input number °*s 339 °2 °)3
promptioutput):
readinlinputesnuaberearray{il)s

END3

5-6

VWV UY YO Y YUY WYY Y U

{used for swapping elements)

{ask for size of array)

Loc Lev BE M6809 Cross Pascal

L 1

L2 2 2

L2 3 2

1.20 SORT «SA 02/16/83 13321338

0)--

0)=-- (using a simple bubble sort == sort the numbers.)
0)=-

0)-- J 3= arrayesize = 13

0)D- REPEAT

0)=-- exchange := falses

0)=- FOR i 3= 1 TO J DO

O)E- 1F number carraylil > nusber+arrayl(i+13 THEN BEGIN
0)-- temp := pumberearraylils
0)=- numberearraylil = numberearrayliells
0)-- number +arrayli+l] 3= temps

0)=- exchange s= trues

0)-E END3 {THEN and FOR)}

0)=- js=J=13

0)-D UNTIL (NOT exchange) OR (jJ € 133

O)=~

0)=- writeintoutput): {now output the results}
0)-- writeinf{output)s

0)=- writein(outputs®Numbers in sorted order are’®):
C)=- FOR | 2= 1 TO arraye¢size DO

0)-- nriteln(output-numbertnrrnytl]:S)3

0)=—-

0)-C END: (THEN)

0)-8 UNTIL arrayesize <= 03

0)=-

0)-- writein(output):

0)-~- writeinloutput)s

‘0)=-- writelin(outpute®*Done - Thank You'l)$

0)=-A ENDe <{sort)

No Error(s) and No Warning(s) detected

84 Lines 1 Procedures

261 Pcode Iinstructions

5-7

5.5.3 Load Map Listing

potorola 8-bit Cross Linkage Editor Version 1.01
Ccmmand Line:

LINK SORTySCRTySCRTIAIMXL=PASO9LIBRX

Options in Effect: As=Be~HeloloMeQo=UeX

User Commands:

LCCATE PSCT.0SCT $2000

DEF «DHIGH SOFFF

DEF oSIZE O

IN PROMPTeRX

END

Load Map:

Module S T Start End Externally
SCRT P 00002000 000022CD <ENTRY
PROMPT P 000022CE 000022F1 PROMPT
INIT ° 000022F2 00002350 GINIT
cLo P 0000235 00002306 CLO
ENT P 00002307 O0O00023FE oENT
1FD P 000023FF 000025F9 IFD
LCODS 14 00002SFA 00002618 «LODS
RCI P 0000261C 0000269F ROl
RLN P 000026A0 000026E8 oRLN
RNXT P 000026€E9 0000272€ oRNXT
RST P 0000272F 00002794 RST
RET P 00002795 O0O0OCO0280F «RWT
vLOT P 00002810 00002888 .VLODT
WLN P 0000288C 000028B7 oWLN
WRI P 00002888 00002945 <WRI
WRS P 00002946 0000297A oWRS
wyLOD P 00002978 0000299F <WVLD
OVRFL 4 000029A0 00002983 <OVRFL
EXIT P 00002984 O00002A11 EXIT
CVHEX 4 00002A12 00002428 oCVHEX
«ENDD D C 00002A29 00002A29

Table of Externally Defined Symbois:

Name Address Moduie Dispt
«CLO 000023SE CLO 00000000
«CVHEX 00002A12 CVHEX 00000000
«OHIGH 00000FFF USER DEFINED

<ENT 00002307 ENT 00000000
«ENTRY 00002000 SORT 00000000

5-8

Sect

v

02/716/83 13:28:30

Defined Symbols

00002000
000022CE
000022F8 o INITS
0000235E
00002307
000023FF
000025FA
0000261C
000026A0
000026E9 <RNXT2
0000272F
00002798
00002810
0000288C
00002888
00002946
00002978
000029A0
00002986 LEXITI
00002A12

Library Input
PASO9LIBRX
PASO9LIBRX
PASO9L IB.RX

SORT

Page 1

000022F2

00002707

00002984

Mmgtorola 8-bit Cross Linkage Editor version 1.01 02716783 13328330 Page 2

<EXIT 00002986 EXIT 00000002 P PASO9LIBGRX
«EXITI 00002984 EXIT 000C€0000 P PASO9LIBWRX
«IFD 000023FF 1IFD 00000000 P PASO9LIBGRX
JINIT 000022F8 INIT 00000006 P PASO9LIBeRX
«INITS 000022F2 INIT 00000000 P PASO9LIBGRX
«LODS 000025FA LODS 00000000 P PASO9LIB.RX
«OVRFL 000029A0 CVRFL 00000000 P PASO9LIBeRX
«ROI 0000261C RDI 00000000 P PASO9LIB.RX
oRLN 000026A0 RLN 00000000 P PASO9LIBGRX
«RNXT 000026E9 RNXT 00000000 P PASO9LIBGRX
«RNXT2 00002707 RNXT 0000001E P PASO9LIBGRX
oRST 0000272F RST 00000000 P PASO9LIB.RX
oRWT 00002795 RWT 00000000 P PASO9LIBGRX
«SILE €J000000 USER DEFINED

«VLOT 00002810 VLODT 00000000 P PASO9LIBGRX
oWLN 0000288C WLN 00000000 P PASO9LIB.RX
oWR 1 00002888 WRI 00000000 P PASO9LIBGRX
«hRS 00002946 WRS 00000000 P PASO9LIB.RX
omVLD 00002978 WVLD 00000000 P PASO9LIBLRX
PROMPT 000022CE PROMPT 00000000 4 PROMPT RX

unresolved References: None
Mulitiply Defined Symbols: None

No Errors
No Warnings

s-record module has been created.

5-9/5-10

CEaBi

i

- A

s B 4

o
o A%

By

(=
P

g
ot
o o
ol e

1

i
-

§ &
&L £
BGEL00
LBLBGY

% . B3400020

Zinonoea
BeDs e

N B
N

Ao,

‘A ggﬁﬁg}" e

¥

:
iE5a
Pl 4
¥ 3
S LR
3

Bt W

CHAPTER 6

PROGRAM EXECUTION

6.1 MDOS PROGRAM EXECUTION

Once an executable load module has been created with the extension .CM, it may
be executed under MDOS by typing the file name in response to the MDOS prompt.
(The non-MDOS environment is considered in Chapter 7.) Any file variables in
the program header are defaulted to local (i.e., temporary) disk files, unless
an external file assignment is made (see paragraph 6.2). The exception to the
file defaults is-for standard files 'input' and ‘output', which will default to
the system console (#CN) .

6.2 EXTERNAL FILE ASSIGNMENT
External runtime file assignments may be specified in two ways:

a. By a special form of the reset and rewrite procedures.

b. By forming a correspondence between the file variables in the program
header and the command line.

6.2.1 Resource Name Strings

File assignment using the reset and rewrite procedures is described in the
handbook, Pascal Programming Structures for Motorola Microprocessors. The
syntax for this form of the reset and rewrite procedure calls is:

RESET (<file-variable>,<resource-name—string>);
REWRITE (<file-variable>,<resource—name—string>);

The resource name string may be any string-valued expression, including but not
limited to string constants and variables, The resource name string for MDOS
file name conventions is defined as follows:

resource-name-string
file or device
file name

<file or device>[;<option list>]|;<option list>
<file name>|<device name>
<name> [.<suffix>] [:<logical unit>]|
:<logical unit>
#<device mnemonic>
LP|CN|CP|CR
[<option>[,]lI<integer>,]...
0/11213/5|7ICIDIFIN|R|SIW

device name
device mnemonic
option list
option

The options primarily affect the format of new files as they are created for
output. When opening an existing file for input, the file options are
essentially overwritten by the already existing attributes of the file. The
following file-attribute options are defined:

Contiguous diskette space allocation.
Delete protection.

Non-compression of spaces in ASCII records.
System attribute.

Write protection.

sn2Z2u0

6-1

The format of the file records determines whether record I/0 or logical sector
I/0 is performed during the access. In general, logical sector I/0 is performed
whenever possible, and that is when (1) the component size is an even multiple
of the sector size (128 bytes) or (2) the component size is greater than 254
bytes (the maximum size for record 1/0) « The following file formats are
defined:

0 User-defined records. Logical sector I/O.

1 Binary records. Defaults to format 3 or 7, depending upon the device.
Record I/0.

2 Memory-imaged records. Logical sector I/0.
3 Binary records (8-bit data bytes). Record I/O.
5 ASCII text records. Record I/0.

7 ASCII-converted binary records (7-bit data bytes). Record I/0.

Other options defined:

F Forces file-mode I/O for non-diskette devices.
(Default for non-diskette devices is non-file mode.)

R Forces record I/0, overriding the default logical sector I/O when
the component size is 128 bytes. It will cause a runtime error to
specify the R option if the component size is greater than 254
bytes.

I<integer> The size of the initial sector allocation for a new file.

The following default values are utilized for all file variables:

Device type = K
Logical unit = 0
File name = PFXXXX.SA
File format = 0 (if non-text and sector I/0)
= 3 (if non-text and record I/0)
= 5 (if text)
File Attributes Set = None
File/Non-file Mode = File mode
Record/Sector I/0 = Record I/0 (if component size less than 255

bytes and not 128 bytes)

= Sector I/0 (if component size greater than 254
bytes or 128 bytes)

Initial Sector Allocation 128 sectors

Examples of resource name strings:

FILE1.SA
SAM.RO:1;DI24
CRT.CM:1;SCI48,2
#LP;5

#CR; F7

sil:

The last example is a special case in that normally when a resource name string
is provided, a local file variable is marked as being external. However, when
only a logical_ unit is specified as the resource name string, the 1local
attribute is maintained and the file will be deleted at the appropriate time.
This allows the user to direct temporary files to logical units other than :0
(the default).

6.2.2 Command Line File Assignments

The second way file assignments may be specified is by forming a correspondence
between the file variables in the program header and the parameters in the MDOS
command line which invoked the program's execution. For example, given the
following program header:

PROGRAM test (input,output,infile,libfile);

Assuming that program test is now contained in file TEST.CM:0, then a possible
MDOS command line to execute the program would be:

TEST I=FILEA,O=#LP,FILEB.RK,FILEC

NOTES

1. Standard file 'input' is specified by 'I=' preceding the file/device name
with which it is to be associated.

2. Standard file 'output' is specified by 'O=' preceding the file/device
name with which it is to be associated.

3. The default file/device for both standard 'input' and 'output' is #CN
(the console).

4. All other external files are associated with file variables by first
ignoring file variables 'input' and 'output' in the program header and
I= and O= file designations in the command line, and then establishing a
one-to-one correspondence between the remaining files in the two lists.
In the example above, 'infile' will be associated with file FILEB.RK:0
and 'libfile' with file FILEC.SA:0.

5. The default suffix for all file names is .SA, and the default logical
unit is :0.

6. The standard files 'input' and ‘'output' may be specified in any order on
the MDOS command line. The foregoing example could have been written:

TEST FILEB.RK,O=#LP,FILEC,I=FILEA
and the same file assignments would have resulted.

7. All file variables listed in the program header for which no
corresponding external file is listed in the MDOS command line are
treated as temporary files. A runtime—generated file name will be
supplied for each temporary file. All temporary files are deleted upon
program termination.

6.3 PROGRAM TERMINATION

Upon program termination, the compiler will cause a two-byte integer value of
zero to be loaded into the D register, and then a branch to the Pascal exit
routine (.EXIT). If an error occurs, a non-zero value (the error code) will be
loaded into the D register before the exit routine is called. If an MDOS I/O
error occurs, the X register will also contain the address of the IOCB (I/O
Control Block) associated with the error.

If no error occurred, the exit routine will simply reenter resident MDOS via the
.MDENT system call. If an MDOS I/O error occurred, the appropriate system error
message is displayed by the .MDERR system call. If any error occurred, the
following message will be displayed on the console by the .DSPLY system call:

ERR-xx AT yyyy

where: XX Runtime error number.

yyyy = Value of the program counter or, if statement counting is

enabled, the value of the statement counter.

Both values are in hexadecimal. Appendix D contains a list of the runtime error
numbers.

CHAPTER 7

PASCAL-MDOS 1/0 INTERFACE

7.1 DATA STRUCTURES

A Motorola Pascal program will reference a number of runtime routines in order
to perform its I/0. In order to do the I/0 in the most general way, advantage
was taken of the MDOS device-independent 1/0 functions. This allows a file
variable to refer to either a device or a file on diskette at the expense of
having MDOS present in memory whenever the program is executed. The purpose of
this chapter is to document the interface for the non-MDOS user.

The means by which a Pascal program communicates with its environment is through
its file variables. A file variable is allocated space on the Pascal stack and
consists of two parts: a file pointer and a file descriptor.

It should be noted that the format of the file descriptor, as shown in paragraph
7.1.2, is dictated by the fact that it is designed to support file I/0 in an
MDOS environment. For the non-MDOS user, the file descriptor can be formatted
in whatever manner the user deems best for his/her application. For example, it
would be highly unlikely that a user doing non-MDOS I/0 would require an I/0
Control Block (IOCB) in the file descriptor.

7.1.1 File Pointer (FP)

A File Pointer (FP) is allocated by the Pascal Compiler in the local variable
space of the current block for each file variable declared within that block.
The FP consists of two addresses:

a. the address of the current file component (this is the Pascal pointer
associated with the file variable), and

b. the address of the File Descriptor (FD), which contains necessary data to
maintain an MDOS—compatible file.

The FD address is set up by a call to the FD initialize routine, and is
unchanged during the remainder of program execution. The FP component pointer
is initialized by the reset (or rewrite) routine, and then modified as necessary
by the various I/0 routines.

FP Picture
Offset
0: | current component address |
2: | file descriptor address |

7.1.2 File Descriptor (FD)

The Pascal Compiler generates a call to the FD initialization routine, upon
procedure/function/program entry, for each file declared in that program block,
in order to allocate and initialize its file descriptor. Certain generally
necessary data is passed to the initialize routine via the stack, and an FD is
formatted, as follows:

1=1

FD Picture for MDOS09

record buffer

Offset
0% = | next component address |
28 | component size | (in bytes)
4: | file | (32-bit integer)
| position |
8: | file status |
s .| record end address |
12¢ l
| active IOCB |
I |
49: | |
| backup IOCB |
I I
86¢ . |
| sector buffer |
I I
3q2: | I
I I
I I

TABLE 7-1. File Descriptor Status Bits

BIT MEANING
0 Standard File Output
1 Standard File Input
2 Text File
3 Local File
4 Indexed File
5 Reserved
6 Reserved
7 Reserved
8 File Open
9 End-of-File
10 End-of-Line
11 Sector I/0
12 Device Specified
13 Drive Specified
14 Suffix Specified
15 Name Specified

Least Significant Bit = Bit 0

7-2

o~

7.2 INPUT SCHEME

According to the pascal standard, when a reset is done on a file variable, the
first component of the file is immediately accessible by the file pointer (FP).
The problem which arises from this requirement concerns associating a file
variable with an interactive device such as a console. When a reset is done,
the first component must be available, but will not be until the user enters the
first component. Rather than forcing the program to wait until that first
component is entered, Motorola Pascal has adopted the scheme which is known as
'lazy 1/0'.

Essentially, the FP need not point to a valid file component until that
component is accessed. Therefore, when a reset is done, the FP is left 0O,
indicating that “the actual read has not been done yet. When the file component
is then accessed, it is done so via the peek function, which causes the actual
physical read to be done, if necessary. Following the peek, the FP is valid and
points to the current file component.

Consider a reset followed by a get on the same file. After the reset, the first
component should be accessible; after the get, the second file component should
be accessible; but after the reset, the FP is 0 and no read has been done. The
get procedure must cause the read of the first component (since the current FP
was 0) and then set the FP to 0 to indicate that the second read has yet to be
performed. During a subsequent file component access, the peek function will
cause the second read at that time.

7.3 1I/0 ROUTINES
2.3.1 Initialize File Descriptor (IFD)

Entry Point: .IFD
Runtime Errors: 28

Return address

Component size in bytes
Initial file status
pPosition in program header
Address of file pointer
Initialized file descriptor

Stack Parameters:

oA NO
(1) ee o0 (1]

Return Parameters:

Allocate a file descriptor (FD) on the stack, initialize the FD and backup IOCB
with the data given and default values, and put its address in the proper field
of the file pointer (FP). Initialize the current component address with the
address of the record buffer. No action is taken with regard to the MDOS 1/0
system.

1f the file variable was mentioned in the program header, its relative position
in that header is found in the indicated parameter. The position is derived by
counting from 1, beginning at the left, all file identifiers except 'input' and
‘output'. The value of this parameter is irrelevant for local files and for the
files 'input' and ‘'output'. 1f the local bit is not set in the initial file
status, or if standard file 'input' or ‘'output' is indicated, then the MDOS
command line is scanned for the indicated file position or for the “I=' or 'O='
prefix. If a file name is found at the indicated position, then that name is
used to initialize the backup IOCB in the FD. The appropriate status bits are
set depending upon what portion of the file name was specified.

73

7.3.2 Assign File to I/O Resource (AFI)

Entry Point: .AFI
Runtime Errors: 28,29,2A
Stack Parameters: 0: Return address

2: Resource name string [n]
3+n: Address of FP

Return Parameters: 0: Address of FP

Cause the name field of the backup IOCB of the FD of the given file to be set to
the MDOS file/device name contained in the resource name string. Adjust the
file descriptor flags as indicated by any possible options in the resource name
string. Abolish any previous assignment that may have been in effect.

7.3.3 Reset (RST)

Entry Point: .RST
Runtime Errors: 20,26
Stack Parameters: 0: Return address

2: Address of FP

If the file is opened, close it. Copy the backup IOCB to the active IOCB.
Reserve the device and open it for input. Set the current component address in -
the FP to 0. Initialize the file position to 1. Set the opened bit in the file
status word.

7.3.4 Rewrite (RWT)

Entry Point: <RWT
Runtime Errors: 21,26
Stack Parameters: 0: Return address

2: Address of FP

If file is opened, close it and delete it if it is a disk file. Copy the backup
IOCB to the active IOCB. Reserve the device, create the file, and open it for
output. Set the end-of-file and opened bits in the file status word. Initialize
the file position to 1. 1Initialize the current component address in the FP to
the address of the record buffer if doing record I/O, or to the address of the
sector buffer if doing sector I/0.

7.3.5 Close (CLO)

Entry Point: .CLO
Runtime Errors: 25,26
Stack Parameters: 0: Return address

2: Address of FP

If the file is opened for output, complete the last I/O operation. Close the
file, release the device, and delete the file if it was a local disk file.
Clear the opened bit in the file status word.

7-4

7.3.6 Get (GET)

Entry Point: .GET
Runtime Errors: 22,24
Stack Parameters: 0: Return address

2: Address of FP

1f the current component address in the FP is 0, fetch the next component .
Increment the file position. Clear the current component address in the FP.

7.3.7 Peek (PEE)

Entry Point: .PEE
Runtime Errors: 24,27
Stack Parameters: 0: Return address

2: Address of fP
Return Parameters: 0: Address of component

If the current component address in the FP is 0, fetch the next component. Push
the current component address onto the stack.

7.3.8 Put (PUT)

Entry Point: .PUT

Runtime Errors: 23,25

Stack Parameters: 0: Return address
2: Address of FP

Increment the current component address in the FP by the component size. if
greater than the end of the record buffer, output the record and reset the
current component address. Increment the file position.

7.3.9 Read Character (RDC)

Entry Point: .RDC
Runtime Errors: 22,24
Stack Parameters: 0: Return address

2: Address of variable
4: Address of FP

Return Parameters: 0: Address of FP

If the current component address in the FP is 0, fetch the next component (a
character). Store the current character into the indicated variable. Increment
the file position. Clear the current component address in the FP.

7=5

7.3.10 Read Boolean (RDB)

Entry Point: .RDB
Runtime Errors: 22,24;33
Stack Parameters: 0: Return address
2: Address of variable
4: Address of FP
Return Parameters: 0: Address of FP

If the current component address in the FP is 0, fetch the next component. Skip
over blank characters. Read the character string 'TRUE' or 'FALSE', converting
all characters to uppercase as they are read. Character string scan is
terminated by the first non-alphanumeric or non-matching character. If true or
false was read, store the Boolean value, one or zero, respectively, into the
indicated variable.

7.3.11 Read Integer (RDI)

Entry Point: .RDI
Runtime Errors: 22 y24,31
Stack Parameters: 0: Return address
2: Address of variable
4: Address of FP
Return Parameters: 0: Address of FP

If the current component address in the FP is 0, fetch the next component. Skip
over blank characters. Read the numeric character string. Terminate the
character scan on the first non-numeric character. Store the integer value into
the indicated variable.

7.3.12 Read String (RDS)

Entry Point: .RDS
Runtime Errors: 22:24
Stack Parameters: 0: Return address
2: Size of variable
4: Address of variable
6: Address of FP
Return Parameters: 0: Address of FP

If the current component address in the FP is 0, fetch the next component. Read
until the end of the current line. Store up to the maximum number of characters

into the indicated variable. (Note: size of string parameter includes the
length byte.)

7.3.13 Read Packed Array of Characters (RDV)

Entry Point: .RDV
Runtime Errors: 22,24

:+ Return address
size of variable
Address of variable
+ Address of FP

Stack Parameters:

AN O

Return Parameters: 0: Address of FP

If the current component address in the FP is 0, fetch the next component. Read
until the end of the current line. Store the number of characters as indicated

by the stack parameter, padding with blanks if necessary, into the indicated
variable.

7.3.14 Write Character (WRC)

Entry Point: JWRC

Runtime Errors: None

Stack Parameters: 0: Return address
2: Format length
4: Character value
5: Address of FP

Return Parameters: 0: Address of FP

Move the required number of blanks to the record buffer. Move the indicated
character to the record buffer. Increment the current component address in the
FP and the file position after each character.

7.3.15 Write Boolean (WRB)

Entry Point: .WRB

Possible Errors: None

Stack Parameters: 0: Return address
2: Format length
4: Boolean value
5: Address of FP

Return Parameters: 0: Address of FP

Move the required number of blanks to the record buffer. Move the character
string 'TRUE' for a true value or the character string 'FALSE' for a false

value. Increment the current component address in the FP and the file position
after each character.

7.3.16 Write Integer (WRI)

Entry Point: JWRI
Possible Errors: None
Stack Paramters: 0:
2%
4:
6:
Return Parameters: 0:

Move the required number of blanks to the record buffer.

Return address
Format length
Integer value
Address of FP

Address of FP

Convert the integer

value to a character string and move the characters to the record buffer.
Increment the current component address in the FP and the file position after

each character.

7.3.17 Write String (WRS)

Entry Point: WRS
Runtime Errors: None
Stack Parameters: 0:
2
4:
5+n:

Return Parameters: 0

Move the required number

characters to the record buffer.

Return address
Format length
Sstring [n] value
Address of FP

Address of FP

of blanks to the record buffer. Move the string

Increment the current component address in the

FP and the file position after each character.

7.3.18 Write Packed Array

Entry Point: JWRV
Runtime Errors: None
Stack Parameters: :
2%
4:
6+n:
Return Parameters: 0:

Move the required number

characters to the record buffer.

of Character (WRV)

Return address
Array length (n)
Format Length
Array value
Address of FP

Address of FP

of blanks to the record buffer. Move the array

Increment the current component address in the

FP and the file position after each character.

7.3.19 Read Past

.RLN
22,24

Entry Point:
Runtime Errors:

0:
23

Stack Parameters:

1f the current component address in the FP is 0,
characters, incrementing the
position after each character,

End-of-Line (RLN)

Return address
Address of FP

fetch the next character. Read
address in the FP and the file
the line is reached. Clear the

current component
until the end of

current component address in the FP.

7.3.20 Write End-of-Line (WLN)

Entry Point: JWLN

Runtime Errors: 25

Stack Parameters: 0:
2:

Move a carriage return character to the record buffer.

Return address
Address of FP

Output the record and

reset the current component address in the FP.

7.3.21 End-of-Line Status (EOL)

Entry Point: .EOL

Runtime Errors: 24

Stack Parameters: 0%
2

Return Parameters: 0:

Return address
Address of fP

Boolean value

1f the current component address in the FP is 0, fetch the next component.
Return the value of the end-of-line status bit of the indicated text file.

7.3.22 End-of-File Status

Entry Point: .EOF
Runtime Errors: 24
Stack Parameters: 0:

2

Return Parameters: 0:

(EOF)

Return address
Address of FP

Boolean value

1f the current component address in the FP is O, fetch the next component.

Return the value of the end-of-file status bit

of the indicated file.

7-9

7.3.23 Page (PAG)

Entry Point: .PAG
Runtime Errors: None
Stack Parameters: 0: Return address

2: Address of fP
If device type is #CN, move 'ESC X' to the record buffer; otherwise, move a
form-feed to the record buffer. Increment the current component address in
the FP.
7.4 EXAMPLES

Given the following Pascal program, the subsequent I/0 routine calls are
generated in the following order:

Program example (input, output);
Var i : integer

Begin
read (i);
write ('Hello Number ', i:1l);
writeln
End.
Push addr (input)
Push 0
Push 6
Push 1
Call IFD
Push addr (input)
Call RST
Push addr (output)
Push 0
Push 5
Push i
Call IFD
Push addr (output)
Call RWT
Push addr (input)
Push addr (1)
Call RDI
Pop addr (input)
Push addr (output)
Push 'Hello Number '
Push 0
Call WRS
Push i
Push 1
Call WRI
Pop addr (output)
Push addr (output)
Call WLN
Push addr (input)
Call CLO
Push addr (output)
Call CLO

7-10

7.5 EXIT ROUTINE

The only other routine which utilizes MDOS system calls is the program
termination routine EXIT, which has the entry point .EXIT. The routine expects
an error—code in the B- or A-register. If both are zero, ho error has occurred.
If the B-register is non-zero, that value is the error code. If the B-register
is zero, an MDOS I/0 error has occurred, in which case the A-register contains
the error code and the X-register points to the IOCB of the offending file. The
MDOS system calls which are used are MDERR, DSPLY, and MDENT.

7.6 1I/0 UTILITY ROUTINES

Table 7-2 describes all of the MDOS system calls that the I/O routines make, as
well as the assembly-language utilities and routines they reference. The three
utility routines are described in the following paragraphs. Note that the four
routines which reference .RNXT also all reference .RNXT2.

7.6.1 Validate (VLDT)

Entry Point: .VLDT

Runtime Errors: 24

Stack Parameters: 0: Return Address
Exit Parameters: None

Register Values: Entry: Y: Address of File Pointer (FP)

Exit: Y: Address of File Descriptor (FD)
U: Address of File Pointer (FP)
A: MSB of Status

1f the current component address in the FP is not 0, then return. Otherwise,
compare next component address in the FD with the record end address. If the
next component address is greater than or equal, then read the next record,
check for EOF, and reset the next component address and the record end address
(end of valid data plus one). Store next component address as the current
component address in the FP. Increment next component address by the component
size and store. If a text file, check if current character is a carriage
return; if it is, replace it by a space, and set EOL.

7-11

TABLE 7-2. External References

MDOS SYSTEM CALLS ASSEM. ROUT.

THIHL LR

IFD * *
AFI * * *
RST * * * * *
RWT * * * * % *
CLO * * * Kk % *
GET * *
PEE * %
PUT * % ' .
RDC . =
RDB *x x *
RDI * % *
RDS * * *
RDV * * *
WRC *

WRB *

WRI *

WRS *

WRV *

RLN * *
WLN * -
EOL *

EOF *

VLDT * x

RNXT *

WVLD

7-12

7.6.2 Read Next (RNXT)

Entry Points: JRNXT, .RNXT2
Runtime Errors: 22
Stack Parameters: 0: Return Address
Exit Parameters: None
Register Values: Entry: y: Address of File Pointer (FP)
U: Address of File Descriptor (FD)
Exit: y: Address of File Pointer (FP)

U: Address of File Descriptor (FD)
B: Current Character
A: MSB of Status

File must be a text file. If the next character address is greater than or
equal to the record end address, then clear the current component address in the
FP, call VLDT, and check for EOF. Otherwise, store the next component address
in the current component address in the FP, and then increment the next
component address by one. (Second entry point is here.) Increment the position
counter. Get the character. If it is a carriage return, replace it by a space
and set EOL status.

7.6.3 Write Validate (WVLD)

Entry Point: JWVLD

Runtime Errors: None

Stack Parameters: 0: Return address

Exit Parameters: None

Register Values: Entry: Y: Address of File Pointer (FP)
Exit: y: Address of File Pointer (FP)

File must be a text file. If the next component address is greater than the
record end address, then return. Otherwise, store the next component address in
the current component address in the FP, and then increment the next component
address by one. Increment the position counter.

7.7 EXAMPLES OF NON-MDOS ROUTINES

Following is an example of the runtime routines needed to write characters to an
ACIA in an EXORciser environment without MDOS. The routines which need to be
modified are IFD, RWT, WRC, and CLO. -Each of these assembly language routines
contains a header which describes the function of that routine. Note that the
IFD routine, for the sake of generality, still creates a file descriptor which

the other routines access.

Also included is a very short Pascal program which utilizes the ACIA routines.
Note that the phase 2 listing refers to routines .IFD, . , WRC, and .CLO. To
be completely MDOS-independent, a new EXIT routine which does not reference any
MDOS system calls would also have to be provided.

7-13

Mctorola M6309 X-Assembler 1.10 FIX 3 5¢ «1FD «SA 02/17/83 13:32:34

19 VL ELEAEASAZEIRLAIVVLLIL L AXXIIXISREATIILXIIBIXLFLIBELXBAIL IR XBNS
2P = This routine will initialize a file descriptor for b
3P0 % non-MDAS 1/0 to the terminal ACIA. The file type =
4 P % must be texte The file descriptor is allocated on *
59 % the stacks overlaying the passed parameterse *
5 P SBHBEBEEBR FEFX LIV IR XSS SEIBEIGEVEPE XL B EEEITETRS
TP *®

3P 1FD IDNT 10 INIT FILE DESCRIPTOR

3 P XDEF «IFD ENTRY POINT

10 P *

11 P * EQUATES

12 P =

13 A FCF4& ACIA EQU SFCFé TERMINAL ACIA ADDRESS

14 A 0015 CTRLY EQU $15 . ACIA CONTROL REGISTER VALUE

15 p 3

16 P * STRUCTURE OF THE FILE DESCRIPTOR

17 P =

19p L 6-8YTE CONTROL BLOCK WITH THE FOLLOWING FORMAT: iy
19 °p %

20 P * OFFSET: 0: ACIA ADDRESS

21 P % 2: ACIA CONTROL REG VALUE

22 P & 32 CHAR BUFFER

23 P % 4: STATUS

24 P =

25 ¢] PR SE B BE Ik B BE BE BE BE BN BE BE R B R

26 P ®

27 P = STATUS OF STACK:

28 P =

29 P = ENTRY: 0: RETURN ADDRESS

30 P * 2: COMPOGNENT SIZE (ALWAYS ONE) o

31 P = 4: INITIAL STATUS

32 P = 62 PARAMETER POSITION (N/A)

33 p L 8: ADDR CF FILE POINTER

34 P *

35 P - EXIT: 0: INITIALIZED FILE DESCRIPTOR

36 P =

37 P s 2 8 23 3 %% T X XS TS

38 P s #

39 P 0000 AE€E68 «IFD LDX 8¢S ADDRESS OF FILE POINTER

40 P 0002 3364 LEAU 495 ADORESS OF DESCRIPTOR (ON STACK)

41 P 0004 EFO2 sSTu 2eX INIT FD ADDR IN FP

42 P 0006 3343 LEAU 3.U CHAR BUFFER ADDRESS

43 P 0008 EF34 sSTU 0eX INIT CHAR PTR IN FP .

44 P 00NDA EC64 LDD 49S GET STATUS

45 P 000C ED68 sTO 8+S STORE IN. FD

46 P 000E CCFCF4 LDD #ACIA GET ACIA ADDRESS

47 P 0011 ED64 STD LT STORE IN FD

48 P 0013 Cé615 LO8 #CTRLY GET CONTROL REG VALUE

49 P 0015 E766 sT8 698 STORE IN FD

50 P 0017 3540 PULS U GET RET ADOR

S1 P N019 3262 LEAS 2+8 DISCARD EXTRA BYTES

52 P 0018 6&EC4 JMP 0sU RETURMN

53 ? END

ss83% TOTAL ERRORS Q== Q

33382 TOTAL WARNINGS 0o=-]

7-14

mctorola M6309 X-Assembler 1.10 FIX 3 Se oRWT oSA 02/17/83 13256340

12 atastattcsasttt#ttttttsstttt:tts#ttattttttsttctst:aca:#:at:t
2 2 & This routine will initialize the ACIA pointed &
3 P = to by the passed file pointers *
4 P %X 2 SSSETEXRTEE k24 ®
5 P RNWT IDNT 190 REWRITE FILE
6 P XDEF «RHWT ENTRY POINT
7 %

8 P = FILE DESCRIPTOR OFFSETS
9 P *
10 A 0000 ACIA EQU 0 ACIA ADDRESS
11 A 0002 CNTLY EQU 2 CONTROL REGISTER
12 A 0003 CHBUF EQU 3 CHAR BUFFER
13 A 0004 STATUS EQU 4 STATUS
14 P *
15 P * STATUS OF STACK
16 P]
IT P b d ENTRYS 0: RETURN ADDRESS
i8 P = 2t ADDRESS OF FILE POINTER
19 P %
20 P 0090 EE62 oRWT LOuU 248 ADDRESS OF FILE POINTER
21 P 0002 EE42 LOU 29U ADDRESS OF FILE DESCRIPTOR
22 P 0004 AEC4 LDX ACI AU GET ACIA ADDRESS
23 P 0006 C603 LO8 #3 RESET ACIA
24 P 0008 E784 sT8 Oe¢X
25 P 000A E642 LDB CNTLV.U INIT CONTROL REG
26 P 000C E784 sT8 O« X
27 P OO0OE 3043 LEAX CHBUF s U ADDRESS OF CHAR BUFFER
28 P 0010 AFF802 STX (295) RESET BUFFER POINTER
29 P 0013 3540 PULS v GET RETURN ADOR
30 P 0015 3262 LEAS 29+S DISCARD PARAMETER
31 P 0017 6ECSE Jnp 0OsU RETURN
329 END
ssssx TOTAL ERRORS O=- [+]
sssss TOTAL WARNINGS O=- [+]

7-15

Motorola M6809 X-Assembler

1P
2P
3?
4 P
5 P
6 P
7P
3 P
9 P
10 A
11 A
12 A
13 A
1¢ P
15 ?
16 P
17 0
18 P
19 P
20 P
21 P
22 ¢
23 pP
24 P 0000
25 P Q002
26 P 0004
27 P 0006
2% P 0008
29 P 000A
30 P 0008
31 P 000D
32 P 00OF
33 P 0011
34 P 0013
35 P 0015
36 P 0017
37 P 0019
38 P 0018
39 P 001D
40 P OOLF
41 P 0021
42 P 0023
43 P 0025
&4 P 0027
45 P 0029
p

#3322 TOTAL
*333% TOTAL

00090
0002
0003
0004

AE6S
AEQ2
AEB4
EC62
2FQD
SA

2T70A
3404
€620
8DOE
3504
20F3
E664
8006
3540
3263
6EC4
A684
8402
2TFA
E701
39

ERRORS
WARNINGS

lo10 FIX 3

S5e

o WRC «SA 02/17/83 14311316

PR e et R P IEE R S R SR R R R R L R R T
b This routine will write a character to the ACIA *
* precaded by the appropriate number of spacese. 3
IV IBLEIIEEIBXLRFR XNV B XE XX IXSXBIIXIIRXAIEIIILILSILTLXBEIRSAS

WRC IONT 1,0 WRITE CHARACTER
XDEF «WRC ENTRY POINT

&

% FILE OESCRIPTOR OFFSETS

%

ACIA EQU 0 ACIA ADDRESS

CNTLYV EQU 2 CONTROL REGISTER

CHBUF EQU 3 CHAR BUFFER

STATUS EQU 4 STATUS

.

ENTRY:

EXITs:

[NE 2K 3K B BN KK R R

WRC LDX
LOX

LOX

LDD

BLE

WRCO2 DECB
BEQ

PSHS

LD8

3SR

PULS

BRA

WRCO4 LDo8
8SR
PULS
LEAS

JMP

WRITE LDA
ANDA
BEQ
sT8
RTS
END

0-- 0
0-- 0

03
22
43
52

STATUS OF STACK

RETURN ADDRESS

FIELD WIDTH

CHARACTER VALUE

ADDRESS OF FILE POINTER

0t ADDRESS OF FILE POINTER

5+S ADDRESS OF FILE PGINTER

2eX AODRESS OF FILE OESCRIPTOR

ACIAeX GET ACIA ADDRESS

2+S GET FIELO WIDTH

WRCO4 ZERO OR NEGATIVE - NO SPACE.
DECREMENT FIELD WIDTH

WRCO& NO SPACE NEEDED

8 SAVE NEW FIELD WIDTH

a° GET A SPACE

WRITE OUTPUT SPACE

3 RECOVER FIELDO WIDTH

WRCO2 LaogP

4eS GET CHAR VALUE

WRITE OUTPUT CHARACTER

U GET RETURN ADDR

3.8 DISCARD MOST PARAMETERS

0sU RETURN

OeX GET ACIA STATUS

#2 TOR EMPTY?

WRITE NO

leX OUTPUT CHAR

7-16

RETURN

Mctorocla M6809 X-Asserbler

Owﬂﬂ*\ﬁ’u'\oﬂ

ssssx TOTAL
853 TOTAL

Line

1
21
34
4l
St
s

8
9
10
11
12
13

1.10 FIX 3

Se «CLO

+SA 02/17/83 163161320

P Y 2] % S EEEREXS 7 S ST %
@ This routine will close the file which means &
L4 for an ACIA do nothinge *
S LA BAATEEEBEEIE LR % & % ST EBIEBEES
cLO IDNT 1.0 CLOSE FILE
XDEF «CLO ENTRY POINT
%
» FILE DESCRIPTOR OFFSETS
-3
0000 ACIA EQU 0 AC1A ADDRESS
0002 CNTLY EQU Z CONTROL REGISTER
0003 CHBUF EQU 3 CHAR BUFFER
0004 STATUS EQU & STATUS
3
L4 STATUS OF STACK
s
% ENTRY: 0: RETURN ADDRESS
b4 2: ADDRESS OF FILE POINTER
E-3
0000 3510 «CLO PULS X GET RETURN ADDRESS
0002 3262 LEAS 248 DISCARD FP ADDRESS
0004 6E84 JMP QX RETURN
END
ERRORS 0=]
WARNINGS 0-- 0
Loc Lev BSE M63809 Cross pascal 1.20 TESTPROGeSA 02/17/83 14322316
-4) 0)=-- PROGRAM testprog {output)s
-4) 0)=-
-4) 0)=- VAR
-20) O)-- message: ARRAY [lee16) OF chars
=22) O)== is integers
-22) 0)=-
1 O0)A- BEGIN
2 0)== message = *ACIA Test Output®s
3 0)== writeloutputsmessagel11:5)3
4 0)=- FOR § == 2 TO 16 DO write(outputsmessagelilsll}s
6 0)-- writeloutputechr(13)3:1)33 {CRY)
7 O)=- writeloutputschr(103:1)3 <{LF)Y
C)=A ENDe
s%3% No Error(s) and No Warning(s) detected
«s%% 13 Lines 0 Procedures
=282 86 Pcode instructiens

7-17

codo 17
€003

Co04

c006 30
coos8 36
C0%A SF
0008 4F
coocC 34
0Q0E cé
Q010 34
Qo012 cé
colé 36
colé 17
0019 30
cols 34
col0 17
€020 30
c0z23 20
0025

0035 cc
co3s 17
co038 30
Q03E cc
004l 1T
Co44 30
0046 34
c048 ES
Cco48 34
C040 cc
c050 34
co52 17
c055 32
0057 cc
005A ED
0050 Ccé
005F ED
Q062 10A3
0066 1020
006A

006A 30
cosc 34
QO6E 30
Qo071 €

0074 E6
0076 34
0078 cc
0078 34
0070 17
go8o 32
0082 EC
008S 10A3

#M6809 Code Generator 1020
#M6809 Cross Pascal 1620 TESTPROG.SA 02/17/83 16322316

o 4 o 4 4 B

L2

PROGRAM testprog f{output)s

VAR

LBSR
FCB
FD8
LEAX
PSHS
CLRB
CLRA
PSHS
Los8
PSHS
Lo8
PSHS
LBSR
LEAX
PSHS
LBSR
LEAX
BRA
FCC
LDD
LBSR
LEAX
LDD
L3SR

LEAX
PSHS
Loe

PSHS
LDD

PSHS
LBSR
LEAS

LDD
STC
Lo8
STD
CMPD
LBLY
EQU
LEAX
PSHS
LEAX
Loo
LD8
PSHS
LD
PSHS
LBSR
LEAS
Loo
CRPO

massage: ARRAY [le.16]1 OF chari
is integer:

BEGIN
message 3= "AClA Test Output®s
oENT
0
L1
-4oY

«RWT

%+549PCR

%+18

169ACIA Test Output
#16

«LODV

=20sY

#16

o« STRY
writeloutputemessage(11:5)3
-&oY

X

-20+Y

8

#5

D

«WRC

2+S

FOR § 3= 2 TO 16 0O write(outputemessagelilsl)s3
#2

-22yY

#16

-24&0Y

-224Y

L3

]

-49Y
X
-21.Y
-22+Y
DeX

8

#1

]
«WRC
2+S
<22eY
=24+Y

7-18

co89 1027 0000 LBEQ L3

008D c3 0001 ADDD sl
0090 ED A8 EA sTD =220Y
€093 20 DS BRA =41
0095 L3 EQU L

s writetoutputechril13dzl)ds {CR)
0095 30 3C LEAX -4 Y
0097 34 10 PSHS X
0099 cé6 0D LDB #13
co98 34 04 PSHS 8
-80S0 cc ooo01 LDD #1
00AO 34 06 PSHS D
c0A2 17 0000 LBSR o WRC
COAS 32 62 LEAS 295

* wr i tefoutputechr(10)21)3 CLF)
C0A7 30 3C LEAX ~4o¥
00A9 364 10 PSKHS X
00AB ce OA LDB #10
00AD 34 064 PSHS 8
COAF cc 0001 LDD #1
0032 34 06 PSHS D
0NBé 17 0000 LBSR +WRC
Cco87 32 62 LEAS 248

® END.
co089 30 3C LEAX =4qeY
coas 34 10 PSHS X
008D 17 0000 LBSR -CLO
coco L1 EQU 24
goco cCc 0000 LDD #0
coc3 17 0000 L8SR <EXIT
00Ce END

Mmctorola 3-bit Cross Linkage Editor Version 1.0l

Comwand Line:

L INK TESTPROG-TESTPROG.TESTPROGSA!HXL=PASO9L!B.RX

Cptions in Effect: Ae=Be=HoeloLoMeQo=UsX

Lser Commands:

LCCATE PSCT $1000
LCCATE CSCT $4000
DEF .DHIGH $47FF
CEF «SIZE O

IN IFDsRX

IN RWTLRX

IN WRCoRX

IN CLCGRX

END

=18

02/17/83 14329330

Page 1

Laad Map:s

Module

TESTPR
IFD
RWT
WRC
cLo
INIT
ENT
LCcov
STRY
CVRFL
EXIT
CVHEX
«ENCD

w
-

Start

00001000
000010Cs
000010E3
000010FC
00001126
Qo00112C
00001198
000011CO
000011€E3
00001202
00001216
00001274
€ 00004000

OYVV9YP9TVOYOIVVVYVIYV OV

Table of Externalily Defined Symbols:

Name

«CLO
«CVHEX
«CHIGH
-ENT
«ENTRY
«EXIT
<EXITI
«IFD
«INIT

Mctorola 8-bit Cross

« INITS
«LOOV
«CVRFL
.ghT

«SIE
¢ STRY
«WRC

Address Module

00001126 CLO
00001274 CVHEX

0000&47FF USER DEFINED

00001198 ENT
00001000 TESTPR
00001218 EXIT
00001216 EXIT
000010C6 IFD
00001132 INIT

0000112C INIT
000011C0 LODV
00001202 OVRFL
000010E3 RWT

Externally Defined Symbols

End
000010C5 ENTRY
00001082 <IFD
000010FB oRWT
00001125 oWRC
00001128 <CLO
00001197 GINIT
0000118F GENT
000011E2 .LODV
00001201 +STRY
00001215 OVRFL
00001273 LEXIT
0000128A CYHEX
00004000
Displ
00000000
00000000
00000000
00000000
00000002
00000000
00000000
00000006

Linkage Editor Version

00000000
00000000
00000000
00000000

00000000 USER DEFINED

000C11E3 STRV
000010FC WRC

Unresoclved References: None

MLitiply Defined Symbois:

No Errers

No Warnings

S-record module has beeR

00000000
00000000

None

createde

7-20

Sect

-2

V99099 V9Ye

1.01

YVYvVe99

v 9

00001000
000010Cs
000010E3
000010FC
00001126
00001132 LINITS 0000112C
00001198
00001 1CO
000011E3
00001202
00001218 SEXITI 00001216
00001274
Library Input
cLO oRX
PASO9LIBRX
PASO9LIB.RX
TESTPROGSRX
PASO9LIB.RX
PASO9L I8 .RX
IFD oRX
PASO9LIB.RX
02/717/83 14:29330 Page 2
PASO9LIB.RX
PASO9LIBeRX
PASO9L IB.RX
RWT <X
PASO9L IBeRX
WRC eRX

7.8 PASCAL AND INTERRUPTS

There are certain restrictions regarding what can be done with Pascal in an
interrupt environment.

de

Nearly all of the system runtime routines utilize the Y register. If an
interrupt occurs during a system routine, the Y register is not likely to
contain the address of the global data area. If a Pascal module is to be
called to service the interrupt, it will be necessary to load the Y
register with the global data address (found in the RMA as the display
level zero pointer) before calling the routine.

The I/0 routines, as well as NEW and DISPOSE, are not re-entrant. If an
interrupt occurs while either NEW or DISPOSE is modifying the heap
pointer and the freelist links, and then a subsequent call to NEW or
DISPOSE is made in the course of the interrupt processing, the result is
unpredictable but quite likely disastrous.

MDOS system calls will clear the DP register. If an interrupt occurs
during an MDOS system utility, the DP register will have to be reset to
the proper value before a Pascal routine can be called to process the
interrupt. The correct value of the DP register must be known by the
user from the load map, or must have been saved prior to the interrupt.

The statement counter may temporarily have an erroneous value upon
returning from an interrupt processed by a Pascal routine.

7=21/7-22

gish
SIRED
2 eeEn FeUR
i AR e R
pi DEmEmesae doret

CHAPTER 8

EXISTING FLOATING POINT SUPPORT

8.1 GENERAL

The compiler will accept real integers and real function calls and generate the
appropriate intermediate code and runtime routine calls. However, when linked,
errors will occur stating that the floating point runtime routines are not
available. Paragraph 8.3 contains a 1ist of the runtime routines which
eventually will be provided for M6809 Cross Pascal.

8.2 STANDARD TYPES

The M6809 cross Pascal compiler on EXORmacs supports three precisions of
floating point values:

REAL Single precision 32-bit IEEE format
DREAL Double precision 64-bit IEEE format
XREAL Extended precision 80-bit IEEE format

(See the EXORmacs Resident Pascal User's Manual, M68KPASC, for exact details of
the floating point representation.)

Not supported are the following:

INFINITY

NAN

ROUNDING MODES

ROUNDING PRECISION

INFINITY CLOSURE MODES
EXCEPTION MODES

FLOATING POINT CONTROL BLOCK

8.3 CALLING SEQUENCE

The code generator (Phase 2) translates all floating point operations into
runtime library calls. Operands are pushed onto the hardware stack and the
result is (usually) returned on the hardware stack. The code generator assumes
that the values of the Y-register and the DP-register are preserved by the
library routine, and the CC-register is usually left indeterminate. (The
Y-register contains the address of the global data area, and the DP-register
contains the address of the runtime maintenance area.) Some routines are also
expected to save the values in the X-register and the U-register. The
D-register is always considered volatile.

The following entry points are referenced by the code generator. The suffix 'R’
indicates REAL; 'W' indicates DREAL; and 'X'" indicates XREAL.

Each of the following routines is expected to preserve the DP, U, X, and Y

registers.

.ABR
LADR
.CMPR
.DVR
.MPR
.NGR
.REMR
.SBR

.CVBRW
.CVBRX
.CVBWX

Each of the following routines is

ATNR
.COSR
.EXPR
.LOGR
.PWRR
.RNDR
.SINR
.TANR
.TRCR
+RDR

-WRR

<ABW
ADW
-CMPW

ATNW
.COSW
- EXPW
.LOGW
-PWRW
-RNDW
-SINW
- TANW
. TRCW
«RDW
«WRW

.ABX
ADX
«CMPX
.DVX
-MPX
NGX
.REMX
.SBX
«SQRX
.SQTX
.CVTHX
.CVTIX
.CVTIX

.CVBHX
.CVBIX

LATNX
.COSX
.EXPX
.LOGX
«PWRX
-RNDX
.SINX
. TANX
.TRCX
RDX
«WRX

Absolute value

Addition

Comparison

Division

Multiplication

Negation

Remainder

Subtraction

Square

Square root

Convert l-byte integer to real
Convert 2-byte integer to real
Convert 4-byte integer to real
Convert between single/double
Convert between single/extended
Convert between double/extended
Convert below l-byte integer to real
Convert below 2-byte integer to real
Convert below 4-byte integer to real
Convert below single to double
Convert below single to extended
Convert below doublt to extended

expected to preserve the DP and Y registers.

Inverse tangent

Cosine

Exponential

Natural logarithm
Power

Round to 4-byte integer
Sine

Tangent

Truncate to 4-byte integer
Read

Write

8-2

CHAPTER 9

M6809-PASCAL LIMITATIONS

9.1 EXPRESSION COMPLEXITY

During Phase 1 of a Pascal compilation, expressions are translated to a reverse
Polish form. The form uses a push-down stack for the operands, based on the
precedence of the operators. If the precedence of the current operator is less
than that of the next operator, pushing continues. The operators then operate
on the top one or two operands on the stack, leaving the result on the top of
the stack.

Phase 2 simulates the expression stack, using the processor's hardware stack and
registers. It loads operands onto the stack -- actually into the processor's
registers — and then performs the appropriate operation. When the processor
wants to load an operand but the appropriate register is in use, it pushes the
current contents of the register (s) onto the hardware stack in order to free a
register.

To remember what is on the expression stack, Phase 2 maintains a 32-element
array. Each element of the array describes one data item on the hardware stack.
This limits the complexity of expressions that Phase 2 can handle to 32 levels
of parentheses. When the array overflows, Phase 2 emits an error message of
EXPR STACK OVERFLOW.

A scalar (integers, Booleans, characters, enumerated types, etc.) is put in the
D register. Pointers are put in the X register. Sets, strings, records, and
arrays are always pushed directly onto the hardware stack. Each requires only

one element of the expression stack array.

9.2 DATA STRUCTURES

The amount of memory that can be allocated for the global variables of an M6809
Pascal program is limited to 32000 bytes. Likewise, the amount of memory that
can be allocated for the local variables of each procedure or function is
limited to 32000 bytes. The maximum size of any single data structure (array or
record) is similarly limited to 32000 bytes.

String constants are limited to a maximum of 64 characters. Strings are limited

to 254 characters. Sets are fixed at eight bytes, which is 64 items. The
packed attribute has no effect on data allocation.

9.3 PROGRAM CODE

The amount of memory that can be allocated for the code for each procedure,
function, or main program is limited to 32000 bytes.

The standard procedures pack and unpack are not implemented.

Procedure or function identifiers may not be passed as parameters. Level one
procedure and function identifiers must differ over the first six characters.
The maximum number of procedures and functions which can be declared within one
compilation module is limited to 400.

=1

During the processing of a Pascal program, Phase 1 of the compiler generates
labels in the intermediate file for each Pascal statement. For example, an
if...then...else statement will require two generated labels. The maximum
umber of compiler-generated and user—defined labels that Phase 2 is capable of
handling is limited to 400 for each procedure or function. If the label table
overflows, an error message is displayed and Phase 2 will abort. The user can
correct this problem by subdividing the offending procedure or function into two
or more subprocedures.

During program execution, overflow checking is not performed during expression
evaluation even if runtime checking is enabled.

CHAPTER 10

SAMPLE PROGRAM COMPILATION AND EXBCUTION

10.1 COMPILER PHASE 1 LISTING

Line Loc Lev BE M6809 Cross Pascal 1.20 QUEENS oSA 02/17/83 15315322

1t -8) 0)== PROGRAM queens t{inputsoutputelistingds

21 -3) 0)=-

3¢ -8) 0)=-- {using backtrackings this program prints all possibie piacements
4l -8) 0)-- of n queens on an n x n chessboard so that they are nonattackingl)
St -8) 0)--=

6l -8) 0)-- CONST maxsize = 153 (maximum size of chessboard)

7 -8) 0)=-=-

8l -8) 0)=-- VAR

9 -8) 0)=--= Ne {board sizel)

10¢(-8) 0)=-- FowWe {current row)}

1 -14) O)-- i Cloop index) s integer:

12¢ -44) 0)=-- col {column of particular row) 3 ARRAY [1 ee maxsizel OF integer:
13¢ -48) O)=~ listing {file to print resul ts) s texts

141 -48) 0)=--

15¢ 0) 1)=- FUNCTION place (k: integer): booleans

16¢(o) 1)--

17¢ 0) 1)-- {This function returns TRUE if a queen can be placed in the k*th
18¢ 0) 1)-- row and collkl*th columne Otherwises it returns FALSEs. col is
134 0) 1)=- a global array whose first k-1 values have been sete)

20t 0) l)==

21t 0) 1)=- VAR

22¢ -1) 1)=- failed {failed to place a queen) 3 boolean:

23 -3) 1)=- i (loop index) 3 integers

241 -3) 1)--

25 1 1)A- BEGIN {(place)

26 2 1l)=- failed := faises

27 3 1)=-- 1 = 18

28 4 1)-- WHILE (i < k) AND (NOT faited) Do

29 1)8~- BEGIN {check for two in same column or two in same diagonal)
30 5 1)-- failed z= tcoilil = collkl)

31 1) -- OR (abs(collil - collk]l) = abs(i-k))s3

32 6 1)=-- IF NOT failed

33 s THEN i := i +'1 <{go on to next check)

34 N 1)-8 END: {WHILE)

35 8 1l)-- place := NOT failed {set up return valuel)

36 1)-A END: {place)

37 1)==

38 9 O)A- BEGIN {queens)}

33 10 - 0)== rewrite (1isting)s
40 11 0)-- writeln (*SPECIFY SIZE OF BOARD:2*)3

41 12 0)-- readin (n)s
42 13 0)=-- IfF (n <= 0) OR (n> maxsize)
43 14 0)-- THEN writein (*INVALID BOARD SIZE*)
&4 0)=-- ELSE

45 0)B- BEGIN
46 15 0)-- writeln (listing): writeln (tisting)s

47 17 0)=- writein (1isting)s writeln flisting)s
43 19 0)=-- writeln C(l1istings PLACEMENTS OF QUEENS FOR A ‘enile
49 0)=- * X *onsle’ BOARD:z°)3

50 20 0O)=- writeln ({isting)s

351 21 0)=- colfl) 3= 03 Ccollx] is cuerent column for .row x}
52 22 0)-- row ss 13

53 23 O0)=—- WHILE row > 0 DO {for all:rows do)

54 0)C~- SEGIN

55 26 O0)=- colirow) 3:s collrow] ¢+ 13 {(move te next column)
56 2% O)=- WHILE (collrowd <= n) AND (NOT placei{row)) DO

10-1

Loc Lev BE M6809 Cross Pascal 1.20 QUEENS +SA 02/17/83 15315322
26 O)=- collrowl] 3= collrowl] ¢ 13 (try next column)
27 0ji-- IF collrowl <= n <{a position is found)
0)=-=- THEN
28 0)~-- IF row = n {(is a solution completad?)
0)=-- THEN {yes - print it}
0)0- BEGIN
29 0)=-=- FOR i :=1 70 n OO
30 0)-- write (listingscollil:a)s3
31 0)=-- writeln (listing)
0)-D END {THEN)
0)=- ELSE {no - go to next row)
0)D=~ BEGIN
32 0)=- row 3= row + 13
33 0)=- colflrow] 3= 0
ar-o END (ELSE)
34 0)-- ELSE row := row - 1 <{backtrack)}
0)=C END3 (MWHILE)}
35 0)=-- writein tlisting)s
36 0)=-- writein (*SEARCH COMPLETE?)
0)-3 END {(ELSE)
Q)-A ENDe {queens}

**%% No Error{(s) and No Warning(s) detected

=3%% 77 Lines 1 Procedures

»%%%x 320 Pcode instructions

10-2

.

10.2 COMPILER PHASE 2 LISTING

0030
co03
co0e
0006
0007
€009

0008
000E

co10
0010
0012
cols
0017
0019
001A
oo1icC
OO01lE
0020
co22
c024
0026

002A
0020
Q02F
0030
co3l
0033
0035
co37
0038

17

SF
DE
E7

cc
EO

DE
EC
10A3

S5F
20
ce
34
E&
cs
E4
1027

30
EC
58
49
14
34
EC
58
49

0000
o1
0000

02
SF

0001
5D

02
50
46
03

02

0é
SF
o1
EO
0000

A8 D2
5D

88
06
46

2M6809 Code Gensrator 1.20
aM6809 Cross Pascal 1.20 QUEENS oSA 02/17/83 15315:22

l’ﬂ“l“l‘ﬁ'lﬂl'bﬂ&““*Q“IGGHQ

L2

» % %

LBSR
FC8
FDB
CLRB
LOU
sTe

LDD
S¥D

EQU

LDD
CMPD
BLY
CLRB
BRA
LOB
PSHS
LDB
EORB
ANDB
LBEQ

LEAX
LDD
ASLE
ROLA
LoD
PSHS

ASLS
ROLA

PROGRAM gqueens {inputeoutputelisting)?

(using backtrackings this program prints
of n gueens on an n x n chessboard so

CONST maxsize = 153 {maximum size of
VAR
ne {board size)
rows {current row)
] {loop index) s
col (column of particular row) 3
tisting (file to print resul ts) H

FUNCTION pilace (k3 integer): booleansi

all possible placements
that they are nonattacking)

chessboard)

integer:
ARRAY [1 oo maxsizel) OF integer:
texts:

{This function returns YRUE if a queen can be placed in the k°th
row and coilkl®*th columne Otherwisey it returns FALSEe col is
a global array whose first k-1 values have been sete)

VAR
falled (failed to place a gqueen}
i {loop index)

BEGIN {place)
failed 3= falsesd
«ENT
1
t1

2
=1sU
i t= 13
#1
=30V
WHILE (1 < k) AND (NOT failed) DC
*
2
=3,V
6eU
£ 21Y

E 22y
#1

=1eU

0oS*

A3

booleani
integer:

o o

BEGIN {(check for two in same celumn or two In same diagonal)

faitled 3= tcollil = colilkl)

OR (abs(col(i) - coilkl) = absti-K))3

-46+9Y
=3.U

DeX

6ol

10-3

0039
Qo33
CO3E
0040
Coél
0043
0045
0067
0049
C04A
0048
004D
004F
0051
0052
C053
0055
0057
Q059
co58
005¢C
005D
0060
0062
C064
0066
0068
00%9
CCoA
0060
0070
0072
c073
0075
co77
0079

go7s8
c070

0081
cos3
0G36
coss
0088
008A

008A
008C
CO8E
0090
0092
€092
Q095
0096

0098
0098
009C
009E
00Al
coA3

cs
1027

EC
ED

20

DE
E6
csa
E7

17

17

390
34
cC

88
El
Q3

02

04
50

88

46

88
06
84
0S

Q001

50
46
0S

0001
El
03

02
o1
EO
SF

o1
0000
50
0001
5D

86

02

ol
48

0900

0002

0000
00

0000
A8 DO

0001

Le

* 8
w

L1

& # &

LDO
CHPO
B8EQ
CLRB
BRA
Lo8
PSHS
LoD
ASLB
ROLA
LOD
PSHS
LDO
AsLB
ROLA
LEAX
PULS
Susd
BPL
COMA
coMB
ADDO
PSHS
LOD
SuBD
8PL
COMA
COoM8
ADDD
CMPO
BEQ
CLRB

Los
GR8B
ST8

EORB
LBEQ

LDD
ADDD
STD
EQU
BRA
EQU

Lbu
Los
EORS
sTB
EQU
LBSR
FCce
FD8

LBSR
FCB
FOB
LEAX
PSHS
Loo

DeX
QeSee
s+5

4
#1

=3¢V

DeX

69U

DeX

OsX
ST

21

0
=350
69U
s+7

#1
OeSt++
%+5

T+ 6
#1
Q¢S+
-1sU

#l
Le

=344
#1
-3,V

*
*-120
&

IF NOT failed

END3S

THEN

CWHILEY

END? (place)

2
-1,U
$1
8+U
3
«RET
1

2

BEGIN {queens)

rewrite (listing):

«ENT
0
LS
-4$80Y
} §
€1

10-4

t= o+ 1

{go on to next check)

place 3= NOT failed {set up return value)

C0Aaé 34 06 PSHS "}

COAS8 C6 04 (W]) [23
COAA 34 06 PSHS]
00AC cé6 01 LD8 #1
COAE 34 06 PSHS D
0080 17 0000 LBSR «IFD
c083 30 38 LEAX -8eY
0085 34 10 PSHS X
0087 5F CLRSB
0088 4F CLRA
0089 34 06 PSHS D
0038 c6 05 LDB #5
00RD 34 06 PSHS 1]
COSF c6 01 Lo8 #1
00C1 34 06 PSHS 2]
00C3 17 0000 LBSR «1FD
goce 30 38 LEAX -84sY
cocs 34 10 PSHS X
0o0CA 17 0000 LBSR oRUT
00CO 30 3C LEAX =4oY
00CF 34 10 PSHS X
0001 SF CLRB
coD2 4F CLRA
0003 34 06 PSHS D
0005 cs 06 LDB #6
0027 34 06 PSHS D
c009 ce 01 L08 #1
ooD8 34 06 PSHS]
co0D 17 0000 LBSR «IFD
00€EO0 30 3C LEAX -4eY
0052 34 10 PSHS X
COE4 17 0000 LBSR «RST
COE7 30 A8 DO LEAX -484Y
O0EA 3¢ 10 PSHS X
00EC 17 0000 LBSR oRMT
= writeln (*SPECIFY SIZE OF BDOARD:*)3
00EF 30 38 LEAX =8¢ Y
00F1 34 10 PSHS X
GOF3 30 8C 02 LEAX %#+5,PCR
00F6 20 17 BRA %¢25
COF8 16 FCB 22
00F9 53 FCC 22+SPECIFY SIZE OF BOARD:
C10F 17 0000 L8SR «LODS
cll2 SF CLRB
0113 4F CLRA
Clls4 34 06 PSHS 0
0l16 17 0000 LBSR «WRS
0119 17 0000 L8SR o WLN
3 readin (n)s
o1l1cC 30 3C LEAX -4eY
OllE 34 10 PSHS X
0120 30 32 LEAX -140Y
0122 34 10 PSHS X
0124 17 0000 LBSR «RDI
0127 17 0000 LBSR oRLN
= IF (n <= 0) OR (n > ma xsi ze)
%= THEN writeln (®INVALID BOARD SIZE®)
012A EC 32 LDD =14,Y
c12C 2F 03 BLE %+5
012€ SF CLRB
012F 20 02 BRA e d
0131 ce 01 Lo8 #1
0133 34 04 PSHS B
0135 EC 32 LDD =140Y
0137 1083 OOOF cCMPD 15
o138 2 03 13 ¢ *+93

10-5

C130D
0l3€
Cl40
0142
0l4s
0148
CleA
a14C
Q14F
0151
0152
0164
€167
0168
0169
0168
D15E

0171
0174

Cl74
0L77
0179
017¢C
Cl17F
01381

Cl34
0137
c139
013cC
C18F
0131

0194
Q197
0199
019C
C19€
019F
clis8s
C18BE
C13F
01C0
01C2
71C5
c1c?
01C9
01CC
01lCE

0121
0104
ClDe6
0107
01DA
0100
C10€
010F
OlEl}
ClE4
0lEé6
QlES
Cl€EB

17
S5F
4F
34
17
17

15

17
SF
&F
34
17
EC
34
cc
34

-
o

4*

0001

CLRSB
BRA
Loe
OR8
LBEQ
LEAX
PSHS
LEAX
BRA
FCB
FCC
L3SR
CLR8B
CLRA
PSHS
L3SR
LBSR

LBRA
EQU

LEAX
PSHS
L3SR
LEAX
PSHS
L8SR

LEAX
PSHS
LB8SR
LEAX
PSHS
L3SR

LEAX
PSHS
LEAX
BRA
FCB
FCC
LBSR
CLRB
CLRA
PSHS
LBSR
LDD
PSHS
LOD
PSHS
LBSR

LEAX

FC8
FCC
LBSR
CLRB
CLRA
PSHS
L3SR
LDD
PSHS
LDD
PSHS

*+4

s1

095

L6

-8,Y

X
=+59PCR
z+21

18

18, INVALID BOARD SIZE
«LODS

b]
.HRS
«WLN
ELSE
L7
&
BEGIN
writeln (listing)s
-484Y
X
o WLN
-484Y
X
«WLN
writeln tlisting)s
-48,Y
X
e dLN
-4389Y
X
«dLN

writeln (listings *PLACEMENTS OF QUEENS

-48,Y

X

2+54PCR

%+31

28

28y PLACEMENTS OF QUEENS FOR A
«LODS

)
eWRS
-1460Y
D
#l
D
oWR 1

¢ X
#+54PCR
=+6
3
3¢ X
«LODS

eWRS
=-1l6,Y

#1

10-6

onzle

writein (listing)?

writeln (listing):

B80ARD:*) 3

FOR

A

*yncl

ClED
01F0
01F3
C1F5
01F6
C1FE
0201
0232
0203
3205
0208

0208
020E
0210

0213
0214
0215

0218
0214

021C
g21C
C2lE

0222
0225
€226
c227
€229
ca22s8
022E
0230
0231
€232
0234
0237

Qz39
0239
023C
Q023E
023F
0240
0242
C245
0267
0248
024A
024C
C24E
0250
0252
0254
€257
0259
0258
0250

0261
0264
0266
0267

17
30
20

A8 D4

o1
34

L8
34
0000

#* »

A8 D2

A8 D2
34

88
0001
Fl

t1io

A3 D2
34

88
32
03

02
01
04

34
06
FDAS
04
01

0000

A8 D2
34

LBSR
LEAX
ERA

FCB

FCC

LBSR
CLR8
CLRA
PSHS
LBSR
LBSR

LEaX
PSHS
LBSR

CLRB
CLRA
STD

Lo8
STD

EQU
LDD
LBLE

LEAX
ASL B
ROLA
LEAX
PSHS
LEAX
LDD

ASLB
ROLA
LDOD

ADDD
STD

EQU
LEAX
LDD
ASLB
ROLA
LDD
CMPD
BLE
CLRB
BRA
LDB
PSHS
LEAS
LDD
PSHS
LBSR
PULS
EORS
ANDB
LBEQ

LEAX
LDD

ASLS
ROLA

oWRI
s+S.PCR
*+11

8
8¢ BOARD:
«LODS

oWRS
«WLN

-48,Y

«WLN

—&h&oY

#1
=12.Y

%
=12+Y
L9

=46+Y

DeX

X
-46+Y
=12+Y

DeX
(31
(0sSe+])

&
-46+Y
=120Y

DeX
=140Y
3+5

L 223
#1

B
-1eS
=12.Y
D
2=-596
8

#1
OeS+
L1l

-464Y
=12¢Y

uritoln\(llsting):

coill) =

T ow

03 {collx]

3= 13

WHILE row > 0 DO

BEGIN

coifrow] 2= collrow)] ¢+ 13

{for all rows dol)

is current column

for row xJ

{move to next column)

WHILE (collrowl <= n) AND (NOT piacelrow)) DO

10-7

collrow]

3= collrowl] ¢ 13

{try next celumn’

0268
026A
c26C
C26F
0271
0272
0273
c275
0278
027A
027C

027C
C27F
0281
0282
0283
0285
02338

gesc
C28&
0291

0235
€298
029A
029C
C29F
0242
0246

02A6
02A9
02A8
02AE
0280
c231
0232
0254
cz286
0289
0288
C23E
Q2C0
g2c€2
c2Ce
02CA
02CD
02CF
0201

0201
0204
0206

0209
020C

020C
Q20E

30

53
49
gC
10A3
102¢€

EC
1043
1026

cc
ED
EC
ED
10A3
1020

EC
c3

88

A8 D2
34

88
0001
Fl
80

A8 D2
34

88
32
0000

34

0000

0001
36
32
A8 CE
36
0000

A8 DO

A8 D2
36

83
06
0004
06
0000
62
36
A8 CE
0000
0001

D5

A8 0O
10
0000

0000

34
0001

L11

#*

L14

L15

LEAX
PSHS
LEAX

ASL3
ROLA
LoD
ADDD
STD
BRA
EQU

LEAX
LOD

ASLB
ROLA
LDD

CMPD
LBGT

LDOD
CMPO
LBNE

LDOD
STD
LDD
STD
CMPO
LBLT
EQU

LEAX
PSHS
LEAX
LoD
ASLB
ROLA
LOD
PSHS
LDO
PSHS
LBSR
LEAS
LOD
CupPO
LBEQ
ADDO
STOD
BRA
EQU

LEAX
PSHS
L8SR

LBRA
EQU

LDD
ADDD

DeX

X
-46+Y
-12,Y

DeX

#1
{09Se+])
=65

&

-46+Y
-12+Y

DeX
-l40Y
Li2

=-12»Y
-14.Y
L13

#1
-100Y
-14,Y
=-504Y
-10.Y
L1S

-480Y
-486+Y
=-10+Y
DeX
#4
2+S
-10.Y
-500Y
L1S
-10+Y
=41
-48,Y

«WLN

L16

=12+Y

10-8

iIF colfrowl] <= n
THEN

IF row = n
THEN

BEGIN
FOR

we i

END (T
ELSE

BEGIN
row

{a position is found}

{is a solution completed??

{yes - orint it}

i =1 TO n DO

write (listingecollilié)s

teiln (listing)

HEN)
{no - go to next row)

:= row + 13

02z1

€223
N2Eé
C2€7
Cc2%8
02EA
02€8
02€EC

02EE
02€EE
02F1

C2F1
02F3
02F6
02F8
02F8
C2FB

02FB
02FE
0300

0303
0305
03¢C7
C30A
030C
030D
031C
C31F
0320
0321
0323
0326

€329
0329
032C
C32E
€331
£333
0335
0338
C33A
033C
033F
033F
0342
0345

ED

30
58
49
SF

4F
€D

16

EC
ED

16

30
34
17

30
34
30
20

34

A8 D2

88

84

0000

34
0001
34

FF21

A8 DO

10
0000

8C 02

L16

L12

* i

L7

LS

STD

LEAX
ASLB
ROLA
LEAX
CLRS
CLRA
ST0

EQU
LBRA
EQU

LD®
SuBD
STD
EQU
LBRA
EQU

LEAX

PSHS
LBSR

LEAX
PSHS
LEAX
BRA

FCB

FCC

LBSR
CLRB
CLRA
PSHS
LBSR
LBSR

EQU

LEAX
PSHS
LBSR
LEAX
PSHS
LBSR
LEAX
PSHS
LBSR
EQU

LDD

LBSR
END

=12¢Y

-464Y

De X

-129+Y
#1
=120Y
&
=220
%

-48.Y
X
<WLN

-8sY

X
=+5,PCR
*+18

15

END

.o

writeln

writeln

15,SEARCH COMPLETE

«LODS

D
+HWRS
«HLN

END (ELSE)

ENDe {(queens)

]
=480Y
X
+CLO
-8+¢Y
X
«CLO
—-4eY
X
«CLO
50

#0
«EXIT

10-9

collrowl

END (ELSEY

ELSE row 3= row =

{WHILEY

(listing)s

(°*SEARCH COMPLETE")

1

s= 0

{backtrack}

10.3 LINKER LISTING

The load map describes the memory allocations and the library routines in the

resulting executable load module.

The Pascal module will contain the addresses

and names of each of the level one procedures and functions in the program. The
main program entry point is designated .ENTRY.

¥ctorcla 2-bit Cross Linkage Editor Version

Ccmrand Line:

LINK QUEENS y QUEENS ¢ QUEENSSATMXL=PASO9LIBGRX

Cotions in Effect:

User Commands:

LCCATE PSCT,0SCT 82900
CEF <OHIGH SDFFF

DEF .SIZE 1

END

Lcad M4ap:

Module

QUEENS
INIT
CLo
ENT
IFD
LCOS
RCI
RET
RLN
RAXT
RST
RWT
VLCT
WLN
WRI
WRS
WVLD
CVRFL
EXIT
CVHEX
« ENDD

w
-

Start

00002000
00002345
00002381
Q000242A
00002452
00002640
0000266F
000026F3
000027CF
00002758
0000279€
00002804
0000287F
000028F8
00002927
00902935
000029€EA
00002A0F
00002A23
00002481
C 00002A98

OV VYUV OUOVYVIVVVUYVIPUVU VYU VYD VUV O

End

00002344
00002380
00002429
00002451
0000264C
0000266E
000026F2
0000270E
00002757
00002790
00002803
0000287€E
000028FA
00002926
00002984
000029E9
00002A0E
00002422
00002A80
00002AS7
00002498

Table of Externally Defined Symbols:

Name

<CLO
«CVHEX
«DHIGH
«ENT
«ENTRY
<EXIT

Address Module

00002381 CLO
00002481 CVHEX

0
0

Q0000FFF USER DEFINED

0000242A ENT
00002098 QUEENS
00002A25 EXIT

0
0
o]

Avs=Se=HoeloloMeQoe=UsX

l.01

Externally

PLACE
«INIT
«CLO

e ENT
«IFD
«L0DS
'RDI
«RET
«RLN
«RNXT
«RST
«RNWT
«VLOT
<WLN
«WRI
«WRS
«WYLD
«QVRFL
<EXIT
«CVHEX

ispl

0000000
0000000

0000000

0000098
0000002

10-10

Seect

99

Ve

02717783

15217245

Defined Symbols

00002000
00002348
00002381
00002424
€0002452
00002640
0000266F
000026F3
0000270F
00002758
0000279€
00002304
0000287F
000023F8
00002927
00002985
000029€A
00002A0F
00002A25
00002481

Library

. «ENTRY

«INITS

«RNXT2

«EXITI

Input

PASO9LIB.RX
PASO9LIBeRX

PASO9L1IB.RX

QUEENS

PASO9LIB.RX

Page 1

00002098

00002345

00002776

00002423

«RX

Mctorola 3=-bit Cross Linkage Editor version 1.01 ©02/717/83 15:17:45 Page 2

SEXITI 00002423 EXIT 00000000 P PASO9LIBGRX
«IFD 0002452 IFD 00000000 P PASOSLIBGRX
«INIT 00002348 INIT 00000006 P PASOILIBGRX
«INITS 00002345 INIT 00000000 P PASO9LIBGRX
«L0JS 00002640 LODS 00000000 P PASO9LIBRX
«CVRFL 0N002A0F OVRFL 00000000 P PASO9SLIB.RX
«RDI 0000266F RCI 00000000 P PASO9LIBGRX
«RET 000026F3 RET 00000000 P PASO9LIBGRX
«RLN 0000270F RLN 00000000 P PASO9LIB.RX
oRNXT 0002758 RNXT 00000000 P PASOSLIBRX
«RNXT2 00002776 RNXT 0000001E P PASOILIB.RX
aRST 0000279€ RST 00000000 P PASO9LIBeRX
oRWT 00002804 RWT 00000000 P PASO9LIBGRX
«SILE 00000001 USER DEFINED

oVLIT 0000287F VLDT 00000000 P PASO9LIBGRX
oWLN 000023F8 WLN 00000000 P PASO9LIBGRX
oWR1 00002927 WRI 00000000 P PASO9LIBGRX
oWKS 00002985 WRS 00000000 P PASO9LIBGRX
+mVLD 000029EA WVLD 00000000 P PASO9LIBGRX
PLACE 00002000 QUEENS 00000000 P QUEENS oRX

Unresolved References: None

Multiply Defined Symbols: None

No Errors
NOo Warnings

s-record module has been createde

10-11

'listing' is
«SAZ1

The file variable
1 by specifying it on the command
RESULT

PAGE 002

«SAzl

SuLT:1
SPECIFY SIZE OF BJARD:
RESULT

8

=4

PAGE Q01

line. The RESULT file is then listed to show the solutions for a standard chess
QUEENS R

The execution of the program is shown below.
board.

associated with the external file RESULT.SA

10.4 EXECUTION
=EXBIN QUEENS
SEARCH COMPLETE

O LNNMODENRMNELTMEINPOMINENMMOMMINONE CONEOO0OCN
MECOOCOME DONOMOUNNDN TANNEANNS=ANNINNMON OMMENME N~
NN O Deded MO ONMNDONNLELODINDODANSINANNCTINGTN NSO~ INN
CONMRDONOMMMMSOMENGSINrd SOMDINMDeO DD INDOON O
HOPM MO E O Ottt N ot et P O DN ONNG Nt OO NINDw et OM
D et et O ot e NN NG F NP rmled NN P et NP0 ¢ O ONNM N
NOONAESNRESNPNMODENANMN@OMMANMMNESTTO~NNMNASEINANNMS

VNNV NNIAIN NNV INO OO 0O OO0V OOVOO VOO OONNA PP ©®m®

"
(=]
o
<
(=]
o
(]
TN MNMNLETMINNEMNMECOO MO OTNEIANNANTNONNONNNAFAMONMMFMINANMOONNMOMOEM ~mM
x
]
NANIN O OO O EPONSOORRE NN ANMOMOSNNOONMNMMONODEHMO~ONMMN- OO
<
& FINLTADODOLNETINNNSNECAN A NNt OO ODODAMO~PENIN~ONNMNNS~MDe
(=]
uw
wv AP~ O N M od F i 00 et MO od OF el O N DD LN G Ot NDO OO O i rA NN NN DOt OO NM®O MM
z
"t
% OM O DDt P MOWeANOD GNP et Nt NGO OPRODDONMNINONNMOBNMMAINGMOEO O~
o
w .
) DO FTNONN—AOMNOFRNNMEONANNEESDOONNENNINENOOMODNMNN™~NE O0OE D
(%]
[
b 4 MO OO~ OmMANIDN O OO OO OO O NANNNNND O OM P PP e ot ot N NN
w
x
w
W A H A NNANNNNNMONOMAOMONOMMMOMOMESTTEIISIrTePrrr e sesrsrnnnnnm
«
-
o

10-12

APPENDIX A

INTERNAL REPRESENTATION OF DATA

Integer:
I5 8 7 0
Is | I |
Size: 2 bytes (default size)
Format: Signed two's—complement
Range: -32,768 to 32,767

for an integer subrange type within the range -128 to 127, inclusive:

7 0
Is | I
Size: 1 byte
Format: Signed two's-complement
Range: -128 to 127

s outside the range -32,768 to

for an integer subrange type that extend

32,767, inclusive, but is within the range

inclusive:
31 24 23 16 15 8 7 0
Is | | I : | I
Size: 4 bytes
Format: Signed two's-complement
Range: "2,147,483'648 tO 2,147'483,647

NOTE: MAXINT = 2147483647.

Character: 7 6 0
[0 | I
Size: 1 byte
Format: 7-bit ASCII
Range: 0 to 127
Boolean: 7 0
I |
Size: 1 byte
Values: 0 = False
1 = True
Set:
63 56 55 48 47 40 39 32
| I |
31 24 23 16 15 8 7 0
| | |
Size: 8 bytes
Range: Up to 64 elements
Enumerated 7 0
Scalar:
|0] |
Size: 1 byte

Representation: 0 to 127

8 7 0

15
0 | | |
Size: 2 bytes
Representation: 0 to 32,767
31 24 23 1615 8 7
|0l | | I
Size: 4 bytes
Representation: 0 to 2,147,483,647
String:
|Cur. Length | | | . . g
Size: 1 to 255 bytes
Representation: Current-length byte and
0 to 254 ASCII characters
Pointer: 15 B 7
I
Size: 2 bytes

Range: 0 to

File Pointer:

65,535

I current component pointer |

file descriptor pointer =

File Descriptor:

hex

>

Bm QO P

10
12
14
16

1E
20
22
24
26
28

2C
2E
30

54
56

154
156

Offset

decimal

10
12
14
16
18
20
22

30
32
34
36

40
42
44
46
48

84
86

340
342

| next component pointer I Pascal
. Parameter

| component size I Block

file position |

file status

Record end address

error | transfer t 1/0

X 722 Control
data buffer pointer Block

data buffer start

data buffer end

log. unit number |

I I
I I
I I
I I
| I
I I
I I
| generic device word |
I I
I I
I I
| I
I I
I I
I

I

file name
| extension
extension | RIB
RIB | file descriptor
reserved |
| directory entry |
| reserved |initial file size|

|initial file size| sector buf start|

| sector buf start| sector buf end |

| sector buf end

|internal pointer |

|internal pointer

backup IOCB

Backup
I/0
Control
Block

sector buffer

4
/
I
I
I
I
/
/
I
I
I
I
/
/
I
I

record buffer

I
/
/
I
I
I
|
/
&
I
I
I
I
g
/
I
I

APPENDIX B

ASCII CHARACTER SET

CHARACTER COMMENTS HEX VALUE
NUL Null or tape feed 00
SOH Start of Heading 01
STX Start of Text 02
ETX End of Text 03
EOT End of Transmission 04
ENQ Enquire (who are you, WRU) 05
ACK Acknowledge 06
BEL Bell 07
BS Backspace 08
HT Horizontal Tab 09
LF Line Feed 0A
VT Vertical Tab 0B
FF Form Feed oC
CR Carriage Return oD
SO shift Out (to red ribbon) OE
SI shift In (to black ribbon) OF
DLE Data Link Escape 10
DCl Device Control 1 IL
DC2 Device Control 2 12
DC3 Device Control 3 1
DC4 Device Control 4 14
NAK Negative Acknowledge 15
SYN Synchronous Idle 16
ETB End of Transmission Block i1
CAN Cancel 18
EM End of Medium 19
SuB Substitute 1A
ESC Escape, prefix 1B
FS File Separator 1C
GS Group Separator 1D
RS Record Separator 1E
us Unit Separator 1F

B-1

CHARACTER CQMMENTS HEX VALUE

SP Space or Blank 20
! Exclamation point 21
5 Quotation mark (diaeresis) 22
Number sign 23
S Dollar sign 24
% Percent sign 25
& Ampersand 26
; Apostrophe, acute accent, 27
closing single quote
(Opening parenthesis 28
) Closing parenthesis 29
* Asterisk 2A
+ Plus sign 2B
' Comma (cedilla) 2C
- Hyphen (minus) 2D
. Period (decimal point) 2E
/ Slant 2F
0 Digit 0 30
1 Digit 1 31
2 Digit 2 32
3 Digit 3 33
4 Digit 4 34
5 Digit 5 35
6 Digit 6 36
7 Digit 7 37
8 Digit 8 38
9 Digit 9 > 39
: Colon 3A
: Semicolon 3B
< Less than 3C
= Equals 3D
> Greater than 3E
? Question mark 3F

B-2

CHARACTER

COMMENTS

HEX VALUE

e
A
B
e
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
'
W
X
2
z
[
\
]

Commercial at
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Uppercase letter
Opening bracket
Reverse slant
Closing bracket
Circumflex

Underline

B-3

O w >

WLAH:EO"TJFJU

=

N'<><E<IC'—3(D';U»O"UOZ

40
41
42
43
44
45
46
47
48
49

4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
S5F

COMMENTS

CHARACTER HEX VALUE
! Grave accent, 60
Opening single quote
a Lowercase letter a 61
b Lowercase letter b 62
e Lowercase letter c 63
d Lowercase letter d 64
e Lowercase letter e 65
£ Lowercase letter £ 66
g Lowercase letter g 67
h Lowercase letter h 68
1 Lowercase letter i 69
J Lowercase letter j 6A
k Lowercase letter k 6B
X Lowercase letter 1 6C
m Lowercase letter m 6D
n Lowercase letter n 6E
o Lowercase letter o oF
P Lowercase letter p 70
q Lowercase letter g 71
ig Lowercase letter r 72
s Lowercase letter s 73
t Lowercase letter t 74
u Lowercase letter u 75
Y Lowercase letter v 76
w Lowercase letter w 77
X Lowercase letter x 78
Y Lowercase letter y 79
A Lowercase letter z 7A
{ Opening brace 78
| Vertical line 7C
} Closing brace 7D
- Tilde 7E
DEL Delete 7F

B~4

APPENDIX C

PASCAL LANGUAGE PROCESSOR ERRORS

1 error in simple type
2: identifier expected
3 'program' expected
4: ')' expected
5¢ ':' expected
6's illegal symbol
i error in parameter list
8: 'of' expected

: '(' expected
10: error in type
11: '[' expected
12: ']' expected

13 'end' expected
14: ';' expected
15: integer expected

16: '=' expected

17: 'begin' expected

18: error in declaration part
19: error in field-list

20: ',' expected

21X '*! expected

50: error in constant

51 ':=' expected

52z "then' expected

53« 'until' expected

54: 'do' expected
55’ 'to'/'downto' expected
56: 'if' expected

57 'file' expected
58: error in factor
59: error in variable

101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115%
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:

identifier declared twice

low boundary exceeds high boupdary

identifier is not of appropriate class

identifier not declared

sign not allowed

number expected

incompatible subrange types

file not allowed here

type must not be real

tagfield type must be scalar or subrange

incompatible with tagfield type

index type must not be real

index type must be scalar or subrange

base type must not be real

base type must be scalar or subrange

error in type of standard procedure parameter

unsatisfied forward reference

forward reference type identifier in variable declaration
forward declared; repetition of parameter list not allowed
function result type must be scalar, subrange or pointer
file value parameter not allowed

forward declared function; repetition of result type not allowed
missing result type in function declaration

fixed-point output format allowed for real only

error in type of standard function parameter

number of parameters does not agree with declaraticn
illegal parameter substitution

result type of parameter function does not agree with declaration
type conflict of operands

expression is not of set type

tests on equality allowed only

strict inclusion not allowed

file comparison not allowed

illegal type of operand(s)

type of operand must be Boolean

set element type must be scalar or subrange

set element types not compatible

type of variable is not array

€=2

P s
g . 3
e - ¥ 155
e B :
2 . s i
i o

2%k

B
&

ES

A

Geshads nd- do

v A "
M

=

258 4

B

e 3

<
34
kY

OER S RESE

MOTOROLA GMBH GESCHAFTSBEREICH HALBLEITER

POSTFACH 1229 - MUNCHNER STRASSE 18 - D-8043 UNTERFOHRING

